Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections

2020 ◽  
Vol 8 (16) ◽  
pp. 3506-3512
Author(s):  
Han-Wei Li ◽  
Ju-Yi Mao ◽  
Chia-Wen Lien ◽  
Chu-Kuei Wang ◽  
Jui-Yang Lai ◽  
...  

The isothermal amplification products of mecA and femA genes induce the fluorescence quenching of platinum ions-capped carbon quantum dots to allow the specific identification of methicillin-resistant Staphylococcus aureus.

Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 438 ◽  
Author(s):  
Manyu Shao ◽  
Ming Yao ◽  
Sarah De Saeger ◽  
Liping Yan ◽  
Suquan Song

An eco-friendly and efficient one-step approach for the synthesis of carbon quantum dots (CDs) that encapsulated molecularly imprinted fluorescence quenching particles (MIFQP) and their application for the determination of zearalenone (ZEA) in a cereal sample are described in this study. CDs with high luminescence were first synthesized, and then encapsulated in the silica-based matrix through a non-hydrolytic sol-gel process. The resulting ZEA-imprinted particles exhibited not only an excellent specific molecular recognition of ZEA, but also good photostability and obvious template binding-induced fluorescence quenching. Under the optimized conditions, the fluorescence intensity of MIFQP was inversely proportional to the concentration of ZEA. By validation, the detection range of these fluorescence quenching materials for ZEA was between 0.02 and 1.0 mg L−1, and the detection limit was 0.02 mg L−1 (S/N = 3). Finally, the MIFQP sensor was successfully applied for ZEA determination in corn with recoveries from 78% to 105% and the relative standard deviation (RSD %) was lower than 20%, which suggests its potential in actual applications.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 466
Author(s):  
Kaixin Chang ◽  
Qianjin Zhu ◽  
Liyan Qi ◽  
Mingwei Guo ◽  
Woming Gao ◽  
...  

Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1–4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe3+ ions, for Fe3+ ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe3+ ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe3+ ions displays an obvious linear relationship to Fe3+ concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe3+ ions.


2017 ◽  
Vol 38 (1) ◽  
pp. 117-123
Author(s):  
李满秀 LI Man-xiu ◽  
李永霞 LI Yong-xia ◽  
张媛 ZHANG Yuan ◽  
贺晨芳 HE Chen-fang

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


2015 ◽  
Vol 3 (9) ◽  
pp. 1922-1928 ◽  
Author(s):  
Zi Li ◽  
Huijun Yu ◽  
Tong Bian ◽  
Yufei Zhao ◽  
Chao Zhou ◽  
...  

Nitrogen-doped carbon quantum dots (N-CQDs) prepared via a one-step hydrothermal reaction exhibited highly selective and sensitive detection of Hg2+ and I− through fluorescence quenching and recovery processes, respectively.


2021 ◽  
Vol 22 (18) ◽  
pp. 9695
Author(s):  
Wen-Shuo Kuo ◽  
Ping-Ching Wu ◽  
Chi-Yao Hung ◽  
Chia-Yuan Chang ◽  
Jiu-Yao Wang ◽  
...  

There is an urgent need for materials that can efficiently generate reactive oxygen species (ROS) and be used in photodynamic therapy (PDT) as two-photon imaging contrast probes. In this study, graphene quantum dots (GQDs) were subjected to amino group functionalization and nitrogen doping (amino-N-GQDs) via annealing and hydrothermal ammonia autoclave treatments. The synthesized dots could serve as a photosensitizer in PDT and generate more ROS than conventional GQDs under 60-s low-energy (fixed output power: 0.07 W·cm−2) excitation exerted by a 670-nm continuous-wave laser. The generated ROS were used to completely eliminate a multidrug-resistant strain of methicillin-resistant Staphylococcus aureus (MRSA), a Gram-positive bacterium. Compared with conventional GQDs, the amino-N-GQDs had superior optical properties, including stronger absorption, higher quantum yield (0.34), stronger luminescence, and high stability under exposure. The high photostability and intrinsic luminescence of amino-N-GQDs contribute to their suitability as contrast probes for use in biomedical imaging, in addition to their bacteria tracking and localization abilities. Herein, the dual-modality amino-N-GQDs in PDT easily eliminated multidrug-resistant bacteria, ultimately revealing their potential for use in future clinical applications.


Luminescence ◽  
2015 ◽  
Vol 30 (7) ◽  
pp. 1133-1138 ◽  
Author(s):  
Yu Huang ◽  
Ying Zhang ◽  
Zhengyu Yan ◽  
Shenghua Liao

Sign in / Sign up

Export Citation Format

Share Document