The dietary flavonoid eupatilin attenuates in vitro lipid peroxidation and targets lipid profile in cancer HeLa cells

2020 ◽  
Vol 11 (6) ◽  
pp. 5179-5191
Author(s):  
A. Rosa ◽  
R. Isola ◽  
F. Pollastro ◽  
P. Caria ◽  
G. Appendino ◽  
...  

Eupatilin, a dietary flavonoid, is an antioxidant agent against membrane lipid oxidative damage and induces cytotoxicity, apoptosis and abnormal mitosis, affecting lipid profile and mitochondrial potential in cancer HeLa cells.

Author(s):  
Ashlee Jade Medica ◽  
Robert John Aitken ◽  
Garth Nicolson ◽  
Alecia Sheridan ◽  
Aleona Swegen ◽  
...  

Stallion sperm membranes comprise of a high proportion of poly-unsaturated fatty acids, making stallion spermatozoa especially vulnerable to peroxidative damage from reactive oxygen species generated as a by-product of cell metabolism. Membrane Lipid Replacement therapy with glycerophospholipid (GPL) mixtures has been shown to reduce oxidative damage in vitro and in vivo. The aims of this study were to test the effects of a commercial preparation of GPL, NTFactor® Lipids, on stallion spermatozoa under oxidative stress. When oxidative damage was induced by the addition of arachidonic acid to stallion spermatozoa, the subsequent addition of GPL reduced the percentage of 4-hydroxynonenal (4-HNE; a key end product of lipid peroxidation) positive cells (32.9±2.7 vs 20.9±2.3%; P≤0.05) and increased the concentration of 4-HNE within the spent media (0.026±0.003 vs 0.039±0.004 μg/mL; P≤0.001), suggesting that oxidized lipids had been replaced by exogenous GPL. Lipid replacement improved several motility parameters (total motility, 2.0±1.0 vs 68.8±2.9%; progressive motility, 0±0 vs 19.3±2.6%; straight line velocity, 9.5±2.1 vs 50.9±4.1 μm/s; curvilinear velocity, 40.8±10 vs 160.7±7.8 μm/s; average path velocity 13.4±2.9 vs 81.9±5.9 μm/s; P≤0.001), sperm viability (13.5±2.9 vs 80.2±1.6%; P≤0.001) and reduced mitochondrial ROS generation (98.2±0.6 vs 74.8±6.1%; P≤0.001). Supplementation with GPL during 17 oC in vitro sperm storage over 72 h improved sperm viability (66.4±2.6 vs 78.1±2.9%; P≤0.01) and total motility (53±5.6 vs 66.3±3.5%; P≤0.05). It is concluded that incubation of stallion spermatozoa with sub-mm-sized GPL micelles results in the incorporation of exogenous GPL into sperm membranes, diminishing lipid peroxidation and improving sperm quality in vitro.


2015 ◽  
Vol 36 (6) ◽  
pp. 3699
Author(s):  
Rodrigo Arruda de Oliveira ◽  
Marco Antônio De Oliveira Viu ◽  
Maria Lúcia Gambarini

Handling equine semen during the refrigeration process reduces sperm viability, and consequently causes membrane lipid peroxidation, among other challenges. The present study aimed to evaluate the in vitro effects of glutathione (control, 1. 0, 1. 5, and 2. 5 mM) on equine semen in a refrigeration protocol of 16ºC for 36 hours. The following variables were evaluated after 0, 12, 24, and 36 hours refrigeration: total sperm motility, vigor, viability, and plasma and acrosomal membrane integrity. Motility was higher with 2. 5mM of glutathione (57. 8 ± 7. 3) after 12 hours of refrigeration compared to the control (53. 2 ± 8. 3) (P < 0. 05). After 36 hours of refrigeration, motility was higher with 1. 5 mM (43. 4 ± 12. 7) and 2. 5mM glutathione (45. 5 ± 6. 2), than it was with 1mM glutathione (38. 2 ± 9) and the control (35. 5 ± 18. 4) (P < 0. 05), respectively. Vigor was highest with 1. 5mM glutathione (3. 7 ± 0. 3) after 36 hours compared to the control (3. 2 ± 1. 1), (P < 0. 05). Viability differed between control and 1mM treatments (79. 5 ± 1. 8) only after 24 hours (75. 5 ± 9. 7) (P < 0. 05). Throughout the investigation, no significant differences were noted in plasma and acrosomal membrane integrity (P > 0. 05). The 1. 5 and 2. 5mM glutathione levels were more efficient in protecting sperm cells and yielded higher total motility values after 36 hours of refrigeration.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Gunjan Guha ◽  
V. Rajkumar ◽  
R. Ashok Kumar ◽  
Lazar Mathew

Cyanthillium cinereum(Less.) H. Rob. (Asteraceae) has been traditionally known for its medicinal properties, all aspects of which are yet to be exploited. This study was aimed at investigating the therapeutic potential of polar (methanolic and aqueous) and nonpolar (hexane and chloroform) crude extracts of the whole plant. Several parameters including free-radical (DPPH•, ABTS•+, H2O2and•OH) scavenging, reducing power, protection of DNA against oxidative damage, cytotoxicity, inhibition of oxidative hemolysis in erythrocytes, total phenolic content and inhibition of lipid peroxidation were examined. All the free-radical generating assay models demonstrated positive scavenging efficiency with differential but considerable magnitudes for the four extracts. However, only the hexane extract showed significant H2O2scavenging effect. Lipid peroxidation was estimated by thiobarbituric acid-malondialdehyde (MDA) reaction, and a high degree of inhibition was shown by all the extracts. Reducing power of the polar extracts was higher than the non-polar ones. All extracts showed a concentration-dependent increase in phenolic contents. Oxidative damage to erythrocytes was hindered by all extracts in diverse degrees. XTT assay showed that all extracts have mild cytotoxic property. The aqueous extract evidently demonstrated protective effect on pBR322 plasmid DNA against oxidative breakdown. These results suggested the potential ofC. cinereumas medicine against free-radical-associated oxidative damage and related degenerative diseases involving metabolic stress, genotoxicity and cytotoxicity.


2019 ◽  
Vol 13 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Margarita Velásquez ◽  
Darío Méndez ◽  
Carlos Moneriz

Background: Pyridoxine has reduction and prevention against the levels of reactive oxygen species in in vitro studies. However, the biochemical mechanism that explains this behavior has not yet been fully clarified. Objective: To evaluate the effect of pyridoxine against oxidative damage on the membrane of human erythrocytes. Methods: Cumene hydroperoxide was used to induce oxidative stress in protein and lipid. Human erythrocytes were incubated with pyridoxine and cumene hydroperoxide, either alone or together for 8 h. Oxidative damage was determined by measuring lipid peroxidation and membrane protein carbonylation. Results: The results indicate that the malondialdehyde concentration decreased with increasing concentration of pyridoxine. The membrane protein content also decreased with increasing concentration of vitamin B6, which was confirmed by the decreased signal intensity in the western blot when compared to control without pyridoxine. Results demonstrate that pyridoxine can significantly decrease lipid peroxidation and protein carbonylation in red cell membrane exposed to high concentrations of oxidant agent. Conclusion: Pyridoxine showed a protective effect against the oxidative stress in human erythrocytes in vitro, inhibiting the carbonylation and the oxidative damage of erythrocyte membrane proteins. To date, such an effect has not yet been reported in terms of protein oxidation.


1993 ◽  
Vol 264 (6) ◽  
pp. G1009-G1015 ◽  
Author(s):  
D. Jourd'Heuil ◽  
P. Vaananen ◽  
J. B. Meddings

During inflammatory conditions, peroxidation of biological membranes often takes place. Deleterious physiological consequences, in terms of membrane function, could theoretically be mediated by either direct oxidative attack upon integral membrane proteins or by indirectly altering the lipid environment surrounding these proteins. To address this issue, in vitro peroxidation of guinea pig brush-border membrane vesicles was induced by incubation of the vesicles with ferrous sulfate and ascorbic acid. We found that ongoing peroxidative attack initiates lipid peroxidation and radically alters the physical properties of the membrane lipid bilayer in a well-defined and regional manner. Peroxidation of microvillous membrane produced an increasingly rigid membrane. Coupled with these alterations was a fivefold reduction in maximal rates of sodium-dependent glucose transport that appeared to have a multifactorial origin. Approximately one-third of this reduction was secondary to altered membrane physical properties and was reversible by fluidizing the vesicles and returning membrane physical properties to normal. The remaining reduction in glucose transport activity was not responsive to membrane fluidization and was presumably related to direct damage of the transport protein.


2020 ◽  
Vol 16 (3) ◽  
pp. 284-293
Author(s):  
George Laylson da Silva Oliveira ◽  
Maria das Dores Alves de Oliveira ◽  
Maria da Conceição Oliveira Prado ◽  
Alexandre de Barros Falcão Ferraz ◽  
José Carlos Correia Lima da Silva ◽  
...  

Background: Garcinielliptone FC corresponds to a polyprenylated acylphloroglucinol having a benzophenonic core (diphenylmethanone) substituted with isoprenyl(s) group(s) (3-methyl-2-butenyl) and 2-isopropenyl-hex-5-enyl. Objective: The present work evaluated the antioxidant activity of garcinielliptone FC (GFC) in vitro against non-biological radicals [2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azinobis-3- ethylbenzothiazoline-6-sulfonic acid (ABTS•+)] and ex vivo against oxidative damage induced by AAPH (2,2'-azobis-2-methylpropionamidine dihydrochloride) and iron/citrate ion in erythrocytes and mitochondria, respectively. Methods: In addition to the protective effect, the main biochemical indexes of oxidative stress, such as lipid peroxidation through the formation of Thiobarbituric Acid Reactive Substances (TBARS), Superoxide Dismutase (SOD), Catalase (CAT) activity and reduced glutathione (GSH) levels. Results: According to the results obtained in erythrocytes, the antioxidant results at concentrations of 0.1, 0.3, 0.7, 1.5 and 3.0 mM were 26.34 ± 0.68, 43.39 ± 2.17, 62.27 ± 2.17, 86.69 ± 0.47 and 92.89 ± 0.45%, respectively, where GFC reduced the rate of oxidative hemolysis when compared to AAPH (p<0.05). The antioxidant activity observed in erythrocytes was also seen in mitochondria in which GFC reduced mitochondrial swelling by increasing the absorbance when compared to iron/citrate ion complex (p<0.05). In both biological models, GFC had an antioxidant effect on erythrocyte and mitochondrial redox balance when analyzing oxidative stress biomarkers, such as reduction of lipid peroxidation and inhibition of depletion in the activity of SOD, CAT and GSH levels. Conclusion: In conclusion, GFC had in vitro and ex vivo antioxidant activity against oxidative damage induced in erythrocytes and mitochondria acting on the erythrocytic and mitochondrial redox balance.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Garry Duthie ◽  
Philip Morrice

Flavonoids are polyphenolic compounds with potential antioxidant activity via multiple reduction capacities. Oxidation of cellular lipids has been implicated in many diseases. Consequently, this study has assessed the ability of several dietary flavonoid aglycones to suppress lipid peroxidation of hepatic microsomes derived from rats deficient in the major lipid soluble antioxidant, dα-tocopherol. Antioxidant effectiveness was galangin > quercetin > kaempferol > fisetin > myricetin > morin > catechin > apigenin. However, none of the flavonoids were as effective as dα-tocopherol, particularly at the lowest concentrations used. In addition, there appears to be an important distinction between thein vitroantioxidant effectiveness of flavonoids and their ability to suppress indices of oxidationin vivo. Compared with dα-tocopherol, repletion of vitamin E deficient rats with quercetin, kaempferol, or myricetin did not significantly affect indices of lipid peroxidation and tissue damage. Direct antioxidant effect of flavonoidsin vivowas not apparent probably due to low bioavailability although indirect redox effects through stimulation of the antioxidant response element cannot be excluded.


Zygote ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 732-741 ◽  
Author(s):  
Beatriz C. S. Leão ◽  
Nathália A. S. Rocha-Frigoni ◽  
Elaine C. Cabral ◽  
Marcos F. Franco ◽  
Christina R. Ferreira ◽  
...  

SummaryThis study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization–mass spectrometry (MALDI–MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2–20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase ‘e’ and ‘p‘, respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.


2001 ◽  
Vol 48 (1) ◽  
pp. 183-189 ◽  
Author(s):  
M Zielińska ◽  
A Kostrzewa ◽  
E Ignatowicz ◽  
J Budzianowski

Two natural flavonoids, quercetin and isorhamnetin 3-O-acylglucosides, were examined for their inhibitory influence on the in vitro production and release of reactive oxygen species in polymorphonuclear neutrophils (PMNs). The generation of superoxide radical, hydrogen peroxide and hypochlorous acid were measured by, respectively, cytochrome c reduction, dichlorofluorescin oxidation and taurine chlorination. Membrane lipid oxidation was studied by the thiobarbituric acid method in mouse spleen microsomes. The addition of flavonoids at the concentration range 1-100 microM inhibited PMNs oxidative metabolism and lipid peroxidation in a dose-dependent manner. The results suggest that these flavonoids suppress the oxidative burst of PMNs and protect membranes against lipid peroxidation.


Sign in / Sign up

Export Citation Format

Share Document