A high performance fully bio-based epoxy thermoset from a syringaldehyde-derived epoxy monomer cured by furan-derived amine

2021 ◽  
Author(s):  
Hafezeh Nabipour ◽  
Xin Wang ◽  
Lei Song ◽  
Yuan Hu

Owing to the outstanding mechanical strength and modulus, high Tg, anti-flammability and anti-bacterial property, this fully bio-based epoxy thermoset is a promising substitute for DGEBA-based thermoset in high performance fire safe applications.

Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Incoloy Alloy 864 is a high performance alloy developed specifically for automotive exhaust system flexible couplings and other exhaust applications. The alloy has a good combination of oxidation and corrosion resistance, with good mechanical strength, stability, and fatigue properties. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as joining. Filing Code: SS-708. Producer or source: Inco Alloys International Inc.


Nanoscale ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 3079-3091
Author(s):  
Libo Chang ◽  
Zhiyuan Peng ◽  
Tong Zhang ◽  
Chuying Yu ◽  
Wenbin Zhong

Wood-inspired HCNF@Lig introduced into MXenes constructing a nacre-like material with high mechanical strength and excellent flexibility used as a flexible supercapacitor.


2017 ◽  
Vol 29 (47) ◽  
pp. 1704253 ◽  
Author(s):  
Yi Ding ◽  
Jiajing Zhang ◽  
Li Chang ◽  
Xiqi Zhang ◽  
Hongliang Liu ◽  
...  

2015 ◽  
Vol 3 (17) ◽  
pp. 4239-4243 ◽  
Author(s):  
Jieun Ko ◽  
Su Jeong Lee ◽  
Kyongjun Kim ◽  
EungKyu Lee ◽  
Keon-Hee Lim ◽  
...  

An ionic liquid–polymer (IL–PVP) dielectric layer with robust mechanical strength and flexibility was fabricated by a chemical interaction between the ionic liquid and polymer. This dielectric layer allowed operation of flexible thin film transistors with high performance.


2018 ◽  
Vol 551 ◽  
pp. 305-314 ◽  
Author(s):  
Shuangjiang Luo ◽  
Qinnan Zhang ◽  
Tyler K. Bear ◽  
Tyler E. Curtis ◽  
Ryan K. Roeder ◽  
...  

2012 ◽  
Vol 182-183 ◽  
pp. 278-282
Author(s):  
Yan Mu ◽  
Ying Li Fu ◽  
Feng Qing Zhao

A high performance water resistance agent KD-3 prepared from OPC cement, fly ash, slag and additives was used for the modification of hemi-hydrate desulphurization gypsum. Various factors on gypsum block were investigated. The prepared gypsum block possesses excellent water-resistance, good operating property and high mechanical strength. The optimized results was obtained: calcined gypsum 74.9%, KD-3 25%, retarder 0.1%, curing temperature 60°C and curing time 16h.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5738
Author(s):  
Nidal Alshwawreh ◽  
Baider Alhamarneh ◽  
Qutaiba Altwarah ◽  
Shamel Quandour ◽  
Shadi Barghout ◽  
...  

Thermal processing of all aluminum alloy conductors (AAAC) is an important step that is performed to enhance the electrical and mechanical properties after the drawing process. In these 6xxx alloys, mechanical strength and electrical conductivity are normally two mutually exclusive properties. With the increased demand for high performance power conductors, it is important to understand and control microstructural evolution processes (e.g., recovery and the formation of nanoscale precipitates) in these alloys for better electrical and mechanical characteristics. In this study, heat treatment was performed on as-drawn 6201 AAAC wire conductors. The variations in tensile strength and electrical resistivity were quantitatively studied as a function of both the treatment temperature and holding time. Two wire diameters commonly used in the manufacturing of medium and high voltage power cables were used: 1.7 mm and 3.5 mm. From the obtained data, significant changes in the electrical resistivity and tensile strength were observed with increasing the treatment time. For both wire diameters, it was observed that the correlation between strength and resistivity can be described by a simple exponential relationship. This link could be useful in predicting mechanical strength by monitoring electrical resistivity variations during industrial heat treatment of AAAC wire conductors.


Author(s):  
Stefano Rossi ◽  
Massimo Calovi

Graphene represents an innovative material, which possesses a unique combination of properties. The remarkable features of this material allow it to be often used as a reinforcing filler in organic based coatings. The excellent conductivity and mechanical strength properties of graphene produce a significant increase in the performance of the polymer matrix. Recently, however, scholars have focused on the barrier effect properties that can be provided by graphene flakes to obtain high corrosion resistance coatings. If well distributed in the polymeric matrix, in fact, the graphene-based sheets are able to provide a high resistance to the passage of aggressive ions, fundamental for the development of corrosion processes on the metal substrate. The distribution of graphene-based fillers, however, is a critical aspect, which can be improved by means of certain oxidation and functionalization processes of graphene flakes. Recent studies have shown the possibility of combining the excellent features of cataphoretic processes with the remarkable protective properties of graphene-based fillers in the creation of high-performance multifunctional composite coatings. The functionalized graphene oxide flakes, in the correct amount, can in fact increase the protective performance of cataphoretic coatings, as well as providing additional features such as mechanical strength and high conductivity.


Sign in / Sign up

Export Citation Format

Share Document