scholarly journals Electrical Resistivity and Tensile Strength Relationship in Heat-Treated All Aluminum Alloy Wire Conductors

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5738
Author(s):  
Nidal Alshwawreh ◽  
Baider Alhamarneh ◽  
Qutaiba Altwarah ◽  
Shamel Quandour ◽  
Shadi Barghout ◽  
...  

Thermal processing of all aluminum alloy conductors (AAAC) is an important step that is performed to enhance the electrical and mechanical properties after the drawing process. In these 6xxx alloys, mechanical strength and electrical conductivity are normally two mutually exclusive properties. With the increased demand for high performance power conductors, it is important to understand and control microstructural evolution processes (e.g., recovery and the formation of nanoscale precipitates) in these alloys for better electrical and mechanical characteristics. In this study, heat treatment was performed on as-drawn 6201 AAAC wire conductors. The variations in tensile strength and electrical resistivity were quantitatively studied as a function of both the treatment temperature and holding time. Two wire diameters commonly used in the manufacturing of medium and high voltage power cables were used: 1.7 mm and 3.5 mm. From the obtained data, significant changes in the electrical resistivity and tensile strength were observed with increasing the treatment time. For both wire diameters, it was observed that the correlation between strength and resistivity can be described by a simple exponential relationship. This link could be useful in predicting mechanical strength by monitoring electrical resistivity variations during industrial heat treatment of AAAC wire conductors.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2860
Author(s):  
Xueqian Lv ◽  
Zuming Liu ◽  
Ting Lei ◽  
Quan Li ◽  
Yake Ren ◽  
...  

Achieving a good match between strength and conductivity is a challenge of the development of the high-performance Cu-Cr-Nb alloy for aerospace and fusion energy. The effect of heat treatment on Cr2Nb phase, strength and conductivity of spark plasma sintered (SPSed) Cu-2Cr-1Nb (at%) alloy was investigated. The results illustrated that Cr2Nb phase of Cu-2Cr-1Nb alloy can be regulated by heat treatment, multi-scale Cr2Nb phase with sizes of 0.10–0.50 μm, 30–100 nm and less than 30 nm was obtained, and the strength and conductivity were significantly increased after heat treatment at 500 °C for 2 h, the room temperature tensile strength and conductivity were 332 MPa and 86.7% IACS, 2.5% and 34.8% higher than those of as-SPSed alloy; the tensile strength at 700 °C was 76 MPa. Increasing heat treatment temperature and time, the tensile strength of the alloy was reduced by 1.5%, 4.3% and 12.3% after heat treatment at 500 °C, 700 °C and 950 °C for 72 h. The good match between strength and conductivity of Cu-Cr-Nb alloy was obtained by reducing the content of alloying elements (Cr and Nb) and microstructure regulation. This approach can be used to prepare structural/functional materials with excellent strength and conductivity.


1993 ◽  
Vol 8 (8) ◽  
pp. 1866-1874 ◽  
Author(s):  
Munehiro Ishioka ◽  
Toshihiko Okada ◽  
Kenji Matsubara ◽  
Michio Inagaki ◽  
Yoshihiro Hishiyama

Vapor-grown carbon fibers (VGCF's) were prepared in a mixture of benzene and Linz–Donawitz converter gas using floating catalytic seeds derived from ferrocene, cobalt acetylacetonate, and thiophene. The diameters of the fibers thus grown were in the range of 2–7 μm. The fibers were heat-treated in argon atmosphere at temperatures between 1700 and 3000 °C. The electrical resistivity at room temperature and magnetoresistance at liquid nitrogen temperature were measured for the as-grown and heat-treated fibers, and morphology of the heat-treated fibers was observed with a scanning electron microscope. The electrical resistivity was nearly similar to that obtained for VGCF's prepared on a substrate in a mixture of benzene and hydrogen. The size effects on the resistivity and magnetoresistance were observed. The magnetoresistance was also found to depend on the heat-treatment time. The magnetoresistance results showed that a transition heat-treatment temperature for the magnetoresistance change from negative to positive was between 2200 and 2300 °C, indicating the graphitizable nature of the present fiber. A characteristic polygonal appearance was observed for the fibers heat-treated above 2500 °C.


2015 ◽  
Vol 819 ◽  
pp. 39-44 ◽  
Author(s):  
Shamsul Baharin Jamaludin ◽  
Mohd Hanif Abdullah ◽  
Mohd Noor Mazlee ◽  
Kamarudin Hussin

This work examines the effect of solution heat treatment temperature on the tensile strength of Al-Mg-Si aluminum alloy. All samples were machined according to the ASTM B557. The samples were solution treated at 450°C and 530°C and followed by ageing at 160°C for 0, 5, 10, 15 and 20 hours. Tensile test was carried out on the samples after heat treatment. The results showed that the highest tensile strengths (201.69 MPa) was given by the sample solution heat treated at 530 °C for 5 hours followed by 20 hours aging at 160 °C. Whereas, the lowest tensile strength (98.52MPa) was given by the sample solution treated at 450°C for 20 hours. Tensile strength was increased with ageing process and decreased for over-aged samples.


2013 ◽  
Vol 747-748 ◽  
pp. 457-462
Author(s):  
Bao Yi Yu ◽  
Tian Jiao Gao ◽  
Qi Li ◽  
Yu Juan Wu ◽  
Run Xia Li

Based on the advantages of Mg alloys, AZ31 alloy profiles were designed for mobile phones cell, and cars, which expanded Mg alloy application and achieved the purpose of environmental protection and energy saving. Tensile strength of the profile reached to 256 MPa, and elongation was 17.9%. The effects of different heat treatment parameters on microstructure and plastic property of AZ31 alloys profiles were studied. After aging heat treatment (T5), the comprehensive mechanical properties at room temperature of the profiles increased. The tensile strength reached to the maximum of 261 MPa, and the elongation reached to 14.3%, after ageing at 225 for 20h. The elongation reached the maximum value of 18.3%, however, the tensile strength decrease to 241 MPa, after aging at 175 for 15h. Moreover, the influence of cryogenic treatment on microstructure and plastic property of the AZ31alloy profiles were studied. The results showed that elongation increased with the increase of treatment time, which would reach to 18.5% after cryogenic treatment. In addition, by cryogenic treatment and aging treatment, the tensile strength improved to 271 MPa. The cryogenic treatment improved obviously the plastic ability of AZ Mg alloys, while normal heat treatment improved it unobviously.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4102
Author(s):  
Jan Stindt ◽  
Patrick Forman ◽  
Peter Mark

Resource-efficient precast concrete elements can be produced using high-performance concrete (HPC). A heat treatment accelerates hardening and thus enables early stripping. To minimise damages to the concrete structure, treatment time and temperature are regulated. This leads to temperature treatment times of more than 24 h, what seems too long for quick serial production (flow production) of HPC. To overcome this shortcoming and to accelerate production speed, the heat treatment is started here immediately after concreting. This in turn influences the shrinkage behaviour and the concrete strength. Therefore, shrinkage is investigated on prisms made from HPC with and without steel fibres, as well as on short beams with reinforcement ratios of 1.8% and 3.1%. Furthermore, the flexural and compressive strengths of the prisms are measured directly after heating and later on after 28 d. The specimens are heat-treated between 1 and 24 h at 80 °C and a relative humidity of 60%. Specimens without heating serve for reference. The results show that the shrinkage strain is pronouncedly reduced with increasing temperature duration and rebar ratio. Moreover, the compressive and flexural strength decrease with decreasing temperature duration, whereby the loss of strength can be compensated by adding steel fibres.


2007 ◽  
Vol 124-126 ◽  
pp. 1031-1034
Author(s):  
Bong Soo Jin ◽  
Bok Ki Min ◽  
Chil Hoon Doh

To find out suitable Si surface treatment and heat treatment conditions, acid treatment of Si wafer was done for lithium polysilicate electrolyte coating on Si wafer. In case of HCl treatment, the wet angle of a sample is 30o, which is the smallest wet angle of other acid in this experiment. Acid treatment time is 10 min, which is no more change of wet angle. Lithium polysilicate electrolyte was synthesized by hydrolysis and condensation of lithium silicate solution using perchloric acid. Thermal analysis of lithium polysilicate electrolyte shows the weight loss of ~23 % between 400 and 500 , which is due to the decomposition of LiClO4. The XRD patterns of the obtained lithium polysilicate electrolyte also show the decrement of LiClO4 peak at 400 . The optimum heat treatment temperature is below 400 , which is the suitable answer for lithium polysilicate electrolyte.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4157 ◽  
Author(s):  
Isidro Guzmán ◽  
Everardo Granda ◽  
Jorge Acevedo ◽  
Antonia Martínez ◽  
Yuliana Dávila ◽  
...  

Precipitation hardening aluminum alloys are used in many industries due to their excellent mechanical properties, including good weldability. During a welding process, the tensile strength of the joint is critical to appropriately exploit the original properties of the material. The welding processes are still under study, and gas metal arc welding (GMAW) in pulsed metal-transfer configuration is one of the best choices to join these alloys. In this study, the welding of 6061 aluminum alloy by pulsed GMAW was performed under two heat treatment conditions and by using two filler metals, namely: ER 4043 (AlSi5) and ER 4553 (AlMg5Cr). A solubilization heat treatment T4 was used to dissolve the precipitates of β”- phase into the aluminum matrix from the original T6 heat treatment, leading in the formation of β-phase precipitates instead, which contributes to higher mechanical resistance. As a result, the T4 heat treatment improves the quality of the weld joint and increases the tensile strength in comparison to the T6 condition. The filler metal also plays an important role, and our results indicate that the use of ER 4043 produces stronger joints than ER 4553, but only under specific processing conditions, which include a moderate heat net flux. The latter is explained because Mg, Si and Cu are reported as precursors of the production of β”- phase due to heat input from the welding process and the redistribution of both: β” and β precipitates, causes a ductile intergranular fracture near the heat affected zone of the weld joint.


2020 ◽  
pp. 0734242X2095740
Author(s):  
Haijun Bi ◽  
Huabing Zhu ◽  
Lei Zu ◽  
Yong Gao ◽  
Song Gao ◽  
...  

Spent lithium iron phosphate (LFP) batteries contain abundant strategic lithium resources and are thus considered attractive secondary lithium sources. However, these batteries may contaminate the environment because they contain hazardous materials. In this work, a novel process involving low-temperature heat treatment is used as an alternative pretreatment method for recycling spent LFP batteries. When the temperature reaches 300°C, the dissociation effect of the anode material gradually improves with heat treatment time. At the heat treatment time of 120 minutes, an electrode material can be dissociated. The extension of heat treatment time has a minimal effect on quality loss. The physicochemical changes in thermally treated solid cathode and anode materials are examined through scanning electron microscopy with energy-dispersive X-ray spectroscopy. The heat treatment results in the complete separation of the materials from aluminium foil without contamination. The change in heat treatment temperature has a small effect on the quality of LFP material shedding. When the heat treatment temperature reaches 300°C and the time reaches 120 minutes, heat treatment time increases, and the yield of each particle size is stable and basically unchanged. The method can be scaled up and may reduce environmental pollution due to waste LFP batteries.


2019 ◽  
Vol 285 ◽  
pp. 146-152
Author(s):  
Nai Yong Li ◽  
Han Xiao ◽  
Chi Xiong ◽  
De Hong Lu ◽  
Rong Feng Zhou

The semi-solid extruded ZCuSn10P1 copper alloy were annealed at different temperatures and time. The influences of heat treatment temperature and holding time on the microstructure of semi-solid ZCuSn10P1 copper alloy were investigated. The results show that with the increase of heat treatment temperature, the morphology of the semi-solid microstructure was improved, the sharp angle around the primary phase α-Cu and the liquid droplets were reduced. With the increase of heat treatment time, the solid-liquid segregation of the semi-solid structure was improved. The average grain size of the solid phase increased with the increasing of the holding time. After heat treatment, the solid solubility of the primary phase α-Cu increased, and the Sn and P elements in the liquid phase continued to diffuse to the primary phase α-Cu. The microstructure of semi-solid copper alloy was the most uniform after heat treatment at 350°C for 120 min.


Sign in / Sign up

Export Citation Format

Share Document