scholarly journals Stabilization and activation of molecular oxygen at biomimetic tetrapyrroles on surfaces: from UHV to near-ambient pressure

2021 ◽  
Author(s):  
Erik Vesselli

Bridging the pressure gap in surface science has recently allowed the investigation in situ of the fundamental properties of biomimetic 2D metallorganic networks, relevant for the adsorption and activation of small strategic ligands like dioxygen.


Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.



Nano Energy ◽  
2021 ◽  
Vol 83 ◽  
pp. 105830
Author(s):  
Yu Wang ◽  
Wanwan Wang ◽  
Jing Xie ◽  
Chia-Hsin Wang ◽  
Yaw-Wen Yang ◽  
...  


Author(s):  
Xia Li ◽  
Günther Rupprechter

Sum frequency generation (SFG) vibrational spectroscopy is applied to ambient pressure surface science studies of adsorption and catalytic reactions at solid/gas interfaces.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Marc Benjamin Hahn ◽  
Paul M. Dietrich ◽  
Jörg Radnik

AbstractIonizing radiation damage to DNA plays a fundamental role in cancer therapy. X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. The results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further.



2019 ◽  
Vol 11 (31) ◽  
pp. 28407-28422 ◽  
Author(s):  
David Zanders ◽  
Engin Ciftyurek ◽  
Ersoy Subaşı ◽  
Niklas Huster ◽  
Claudia Bock ◽  
...  


2017 ◽  
Vol 53 (37) ◽  
pp. 5231-5234 ◽  
Author(s):  
Jack Chun-Ren Ke ◽  
Alex S. Walton ◽  
David J. Lewis ◽  
Aleksander Tedstone ◽  
Paul O'Brien ◽  
...  

Near-ambient-pressure X-ray photoelectron spectroscopy enables the study of the reaction of in situ-prepared methylammonium lead iodide (MAPI) perovskite at realistic water vapour pressures for the first time.



2015 ◽  
Vol 174 ◽  
pp. 532-541 ◽  
Author(s):  
Benedetto Bozzini ◽  
Matteo Amati ◽  
Patrizia Bocchetta ◽  
Simone Dal Zilio ◽  
Axel Knop-Gericke ◽  
...  


2021 ◽  
Vol 111 (11-12) ◽  
pp. 863-868
Author(s):  
Thorsten Mattulat ◽  
Ronald Pordzik ◽  
Peer Woizeschke

Die optische Kohärenztomographie (OCT) erlaubt die zerstörungsfreie In-situ-Überwachung der Einschweißtiefe beim Laserstrahlschweißen. Für dieses Verfahren wird hier der Einfluss von verringerten Umgebungsdrücken auf die Messqualität untersucht. Es wird gezeigt, dass sich bei niedrigerem Umgebungsdruck deutlich größere Signalanteile aus dem Bereich des Bodens der Dampfkapillare zurückerhalten lassen. Auf diese Weise steigen die effektive Messfrequenz und die Erkennbarkeit von Änderungen der Einschweißtiefe.   Optical coherence tomography (OCT) enables non-destructive in-situ monitoring of the weld penetration depth during laser beam welding. For this technology, the influence of reduced ambient pressures on the measurement quality is investigated. It is shown that significantly larger signal components are obtained from the bottom of the vapor capillary at lower ambient pressure increasing the applicable measurement frequency and the detectability of changes in the weld penetration depth.



2016 ◽  
Vol 59 (5-7) ◽  
pp. 583-590 ◽  
Author(s):  
Susanna K. Eriksson ◽  
Maria Hahlin ◽  
Stephanus Axnanda ◽  
Ethan Crumlin ◽  
Regan Wilks ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document