scholarly journals Research and application of a high-performance fluorocarbon plate prepared via modified a high temperature mould pressing method

RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32265-32275
Author(s):  
Pan Zhang ◽  
Ye Wang ◽  
Yi-rui Shu ◽  
Yan-jun Zhong ◽  
Wei Wang ◽  
...  

Applications of high density carbon plates that are high-temperature pressed using material resistance.

Alloy Digest ◽  
1990 ◽  
Vol 39 (2) ◽  

Abstract ARMCO PH 13-8Mo is designed for high-performance applications requiring high strength coupled with excellent resistance to corrosion and stress corrosion. It has excellent toughness, good transverse properties and excellent forgeability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-224. Producer or source: Baltimore Specialty Steels Corporation. Originally published May 1969, revised February 1990.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract Incoloy Alloy 864 is a high performance alloy developed specifically for automotive exhaust system flexible couplings and other exhaust applications. The alloy has a good combination of oxidation and corrosion resistance, with good mechanical strength, stability, and fatigue properties. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on high temperature performance and corrosion resistance as well as joining. Filing Code: SS-708. Producer or source: Inco Alloys International Inc.


Alloy Digest ◽  
2020 ◽  
Vol 69 (10) ◽  

Abstract Hitachi Metals SLD-Magic is a high-performance alloy cold-work tool steel that is characterized by improved mold lifespan and easy mold fabrication. This datasheet provides information on composition, physical properties, hardness, elasticity as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: TS-802. Producer or source: Hitachi Metals Ltd.


2018 ◽  
Author(s):  
Seng Nguon Ting ◽  
Hsien-Ching Lo ◽  
Donald Nedeau ◽  
Aaron Sinnott ◽  
Felix Beaudoin

Abstract With rapid scaling of semiconductor devices, new and more complicated challenges emerge as technology development progresses. In SRAM yield learning vehicles, it is becoming increasingly difficult to differentiate the voltage-sensitive SRAM yield loss from the expected hard bit-cells failures. It can only be accomplished by extensively leveraging yield, layout analysis and fault localization in sub-micron devices. In this paper, we describe the successful debugging of the yield gap observed between the High Density and the High Performance bit-cells. The SRAM yield loss is observed to be strongly modulated by different active sizing between two pull up (PU) bit-cells. Failure analysis focused at the weak point vicinity successfully identified abnormal poly edge profile with systematic High k Dielectric shorts. Tight active space on High Density cells led to limitation of complete trench gap-fill creating void filled with gate material. Thanks to this knowledge, the process was optimized with “Skip Active Atomic Level Oxide Deposition” step improving trench gap-fill margin.


Author(s):  
D-J Kim ◽  
I-G Kim ◽  
J-Y Noh ◽  
H-J Lee ◽  
S-H Park ◽  
...  

Abstract As DRAM technology extends into 12-inch diameter wafer processing, plasma-induced wafer charging is a serious problem in DRAM volume manufacture. There are currently no comprehensive reports on the potential impact of plasma damage on high density DRAM reliability. In this paper, the possible effects of floating potential at the source/drain junction of cell transistor during high-field charge injection are reported, and regarded as high-priority issues to further understand charging damage during the metal pad etching. The degradation of block edge dynamic retention time during high temperature stress, not consistent with typical reliability degradation model, is analyzed. Additionally, in order to meet the satisfactory reliability level in volume manufacture of high density DRAM technology, the paper provides the guidelines with respect to plasma damage. Unlike conventional model as gate antenna effect, the cell junction damage by the exposure of dummy BL pad to plasma, was revealed as root cause.


2017 ◽  
pp. 96-103 ◽  
Author(s):  
Gillian Eggleston ◽  
Isabel Lima ◽  
Emmanuel Sarir ◽  
Jack Thompson ◽  
John Zatlokovicz ◽  
...  

In recent years, there has been increased world-wide concern over residual (carry-over) activity of mostly high temperature (HT) and very high temperature (VHT) stable amylases in white, refined sugars from refineries to various food and end-user industries. HT and VHT stable amylases were developed for much larger markets than the sugar industry with harsher processing conditions. There is an urgent need in the sugar industry to be able to remove or inactivate residual, active amylases either in factory or refinery streams or both. A survey of refineries that used amylase and had activated carbon systems for decolorizing, revealed they did not have any customer complaints for residual amylase. The use of high performance activated carbons to remove residual amylase activity was investigated using a Phadebas® method created for the sugar industry to measure residual amylase in syrups. Ability to remove residual amylase protein was dependent on the surface area of the powdered activated carbons as well as mixing (retention) time. The activated carbon also had the additional benefit of removing color and insoluble starch.


1997 ◽  
Author(s):  
Anthony G. Evans ◽  
Frederick A. Leckie ◽  
J. W. Hutchinson

2007 ◽  
Vol 336-338 ◽  
pp. 1159-1163 ◽  
Author(s):  
Guo Jun Zhang ◽  
Wen Wen Wu ◽  
Yan Mei Kan ◽  
Pei Ling Wang

Current high temperature ceramics, such as ZrO2, Si3N4 and SiC, cannot be used at temperatures over 1600°C due to their low melting temperature or dissociation temperature. For ultrahigh temperature applications over 1800°C, materials with high melting points, high phase composition stability, high thermal conductivity, good thermal shock and oxidation resistance are needed. The transition metal diborides, mainly include ZrB2 and HfB2, have melting temperatures of above 3000°C, and can basically meet the above demands. However, the oxidation resistance of diboride monolithic ceramics at ultra-high temperatures need to be improved for the applications in thermal protection systems for future aerospace vehicles and jet engines. On the other hand, processing science for making high performance UHTCs is another hot topic in the UHTC field. Densification of UHTCs at mild temperatures through reactive sintering is an attracting way due to the chemically stable phase composition and microstructure as well as clean grain boundaries in the obtained materials. Moreover, the stability studies of the materials in phase composition and microstructures at ultra high application temperatures is also critical for materials manufactured at relatively low temperature. Furthermore, the oxidation resistance in simulated reentry environments instead of in static or flowing air of ambient pressure should be evaluated. Here we will report the concept, advantages and some recent progress on the reactive sintering of diboride–based composites at mild temperatures.


Sign in / Sign up

Export Citation Format

Share Document