scholarly journals Design and enhanced gene silencing activity of spherical 2′-fluoroarabinose nucleic acids (FANA-SNAs)

2021 ◽  
Author(s):  
Hassan H. Fakih ◽  
Adam Katolik ◽  
Elise Malek-Adamian ◽  
Johans J. Fakhoury ◽  
Sepideh Kaviani ◽  
...  

Optimizing FANA modified spherical nucleic acids (FANA-SNAs) for highly efficient delivery of nucleic acid therapeutics.

2019 ◽  
Vol 7 (8) ◽  
pp. 3510-3518
Author(s):  
Ying Ye ◽  
Rong Jin ◽  
Xiaoxin Hu ◽  
Juhua Zhuang ◽  
Wei Xia ◽  
...  

Bioreducible poly(urethane amine)s can be designed and optimized for highly efficient delivery in vitro of DNA or SiRNA into adult or embryonic stem cells with low cytotoxicity.


2008 ◽  
Vol 94 (2) ◽  
pp. 234-245 ◽  
Author(s):  
Andrew D Miller

Nucleic acid therapeutics (or gene therapy) has to date failed to deliver on promise but rapid improvements in the understanding and use of delivery technologies should reverse this situation. In this review of work performed in and in collaboration with the Imperial College Genetic Therapies Centre, progress towards safe nanoparticles for efficient delivery of functional nucleic acids in vivo is described. The intention is to demonstrate the fruits of a journey from the results of initial studies in animal models of disease that suggested that so much should be possible so quickly, to the realization that new technologies are rarely successful so quickly, through to developments in the present day that appear to be approaching the preclinical/clinical threshold with realism but measured confidence. New chemistry is central to the design and formulation of safe nanotechnologies. Chemistry should have a central role to play in ensuring that nucleic acid therapeutics truly live up to their potential for therapy and cure, none more so than in the derivation of newer and better therapies for cancers.


2019 ◽  
Vol 17 (30) ◽  
pp. 7222-7227 ◽  
Author(s):  
Rashi Soni ◽  
Deepti Sharma ◽  
A. Murali Krishna ◽  
Jagadeesh Sathiri ◽  
Ashwani Sharma

A Baby Spinach aptamer based minimal-modified sensor (BSMS) detects nucleic acids of potentially any length with high selectivity and specificity, and shows 2.5-fold more fluorescence enhancement compared to the parent aptamer.


2019 ◽  
Vol 13 (3) ◽  
pp. 187-206 ◽  
Author(s):  
Kuljit Singh ◽  
Ipsita Roy

Background: Protein misfolding is a critical factor in the progression of a large number of neurodegenerative diseases. The incorrectly folded protein is prone to aggregation, leading to aberrant interaction with other cellular proteins, elevated oxidative stress, impaired cellular machinery, finally resulting in cell death. Due to its monogenic origin, Huntington’s disease (HD) is a poster child of protein misfolding neurodegenerative disorders. The presence of neuronal inclusions of mutant huntingtin N-terminal fragments, mainly in the cortex and striatum, is a neuropathological hallmark of HD. Inhibition of protein misfolding and aggregation has been attempted using a variety of conventional protein stabilizers. Methods: This review describes how, in recent times, nucleic acid therapeutics has emerged as a selective tool to downregulate the aberrant transcript and reduce expression of mutant huntingtin, thereby alleviating protein aggregation. Different strategies of use of nucleic acids, including antisense oligonucleotides, short inhibitory RNA sequences and aptamers have been discussed. The following patent databases were consulted: European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), Patent scope Search International and National Patent Collections (WIPO) and Google Patents. Results: Tools such as RNA interference (RNAi) and antisense oligonucleotides (ASOs) are potential therapeutic agents which target the post-transcriptional step, accelerating mRNA degradation and inhibiting the production of the mutant protein. These nucleic acid sequences not only target the elongated CAG triplet repeat translating to an expanded polyglutamine tract in the mutant protein, but have also been used to target single nucleotide polymorphisms associated with the mutant allele. The therapeutic sequences have been investigated in a number of cells and animal models of HD. One antisense sequence, with desirable safety properties, has recently shown downregulation of huntingtin protein in a limited clinical trial. RNA aptamers have also shown promising results in inhibiting protein aggregation in a yeast model of HD. Novel drug delivery techniques have been employed to overcome the blood brain barrier for the use of these therapeutic sequences. Conclusion: The selectivity and specificity imparted by nucleic acids, along with novel delivery techniques, make them hopeful candidates for the development of a curative strategy for HD.


2018 ◽  
Vol 7 (2) ◽  
pp. 46-60 ◽  
Author(s):  
Martina Traykovska ◽  
Sjoerd Miedema ◽  
Robert Penchovsky

This chapter describes how functional nucleic acids, such as aptamers, antisense oligonucleotides (ASOs), small interfering (si) RNAs, and ribozymes are considered by some researchers as valuable tools to develop therapeutic agents. They have not been particularly fast in reaching the market as medicines, due to endogenous barriers to extracellular trafficking and cellular uptake of nucleic acids and their inherent instability when applied in vivo. However, research carried out by the nucleic acid engineering community and pharmaceutical companies to circumvent these obstacles has led to the approval of a few aptamers and ASOs as drugs. Nucleic acid therapeutics are usually administered locally to diseased tissue. The drug candidates currently in clinical trials commonly use the same administration methods as previously licensed nucleic acid therapeutics. These administration techniques carry their own safety risks and advantages. In this article, the present state is discussed and prospective options for the use ASOs and aptamers as drugs are listed.


Nanoscale ◽  
2022 ◽  
Author(s):  
Kai Jiang ◽  
Di Zhao ◽  
Rui Ye ◽  
Xinlong Liu ◽  
Chao Gao ◽  
...  

Spherical nucleic acid (SNA), as a good gene delivery system, has a good application prospect for transdermal administration in skin disorders treatment. However, most of traditional SNA core materials are...


2017 ◽  
Vol 37 (5) ◽  
Author(s):  
Ana Krhac Levacic ◽  
Stephan Morys ◽  
Ernst Wagner

Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.


2018 ◽  
Vol 54 (29) ◽  
pp. 3609-3612 ◽  
Author(s):  
Weimin Ruan ◽  
Meng Zheng ◽  
Yang An ◽  
Yuanyuan Liu ◽  
David B. Lovejoy ◽  
...  

A superior biocompatible spherical nucleic acid (SNA) conjugate was fabricated by grafting siRNA onto the surface of a core composed of a spherical DNA nanostructure that we have termed DNA nanoclew (DC).


Sign in / Sign up

Export Citation Format

Share Document