Local-interaction-field-coupled semiconductor photocatalysis: recent progress and future challenges

Author(s):  
Qin Lei ◽  
Shengjiong Yang ◽  
Dahu Ding ◽  
Jihua Tan ◽  
Jingfu Liu ◽  
...  

This review summarizes recent progress made in the local-field-coupled photocatalytic systems, including electric, thermal, magnetic, and ultrasonic fields, as well as multifield coupling.

2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Mir Saman Safavi ◽  
Frank C. Walsh ◽  
Maria A. Surmeneva ◽  
Roman A. Surmenev ◽  
Jafar Khalil-Allafi

Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Luigi Carbone ◽  
Federica Cariati ◽  
Laura Sarno ◽  
Alessandro Conforti ◽  
Francesca Bagnulo ◽  
...  

Fetal aneuploidies are among the most common causes of miscarriages, perinatal mortality and neurodevelopmental impairment. During the last 70 years, many efforts have been made in order to improve prenatal diagnosis and prenatal screening of these conditions. Recently, the use of cell-free fetal DNA (cff-DNA) testing has been increasingly used in different countries, representing an opportunity for non-invasive prenatal screening of pregnant women. The aim of this narrative review is to describe the state of the art and the main strengths and limitations of this test for prenatal screening of fetal aneuploidies.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2039 ◽  
Author(s):  
Adriano Panepinto ◽  
Rony Snyders

In this paper, we overview the recent progress we made in the magnetron sputtering-based developments of nano-sculpted thin films intended for energy-related applications such as energy conversion. This paper summarizes our recent experimental work often supported by simulation and theoretical results. Specifically, the development of a new generation of nano-sculpted photo-anodes based on TiO2 for application in dye-sensitized solar cells is discussed.


2018 ◽  
Vol 20 (21) ◽  
pp. 4764-4789 ◽  
Author(s):  
Adrian Zajac ◽  
Rafal Kukawka ◽  
Anna Pawlowska-Zygarowicz ◽  
Olga Stolarska ◽  
Marcin Smiglak

The review presents the recent progress made in the field of ionic liquids bearing bioactive components, with a particular emphasis on their use as chemical tools in agriculture and the preservation of agricultural products.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Angga Hermawan ◽  
Ni Luh Wulan Septiani ◽  
Ardiansyah Taufik ◽  
Brian Yuliarto ◽  
Suyatman ◽  
...  

AbstractMolybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 405 ◽  
Author(s):  
Hany M. Elsheikha ◽  
Ruqaiyyah Siddiqui ◽  
Naveed Ahmed Khan

Although major strides have been made in developing and testing various anti-acanthamoebic drugs, recurrent infections, inadequate treatment outcomes, health complications, and side effects associated with the use of currently available drugs necessitate the development of more effective and safe therapeutic regimens. For any new anti-acanthamoebic drugs to be more effective, they must have either superior potency and safety or at least comparable potency and an improved safety profile compared to the existing drugs. The development of the so-called ‘next-generation’ anti-acanthamoebic agents to address this challenge is an active area of research. Here, we review the current status of anti-acanthamoebic drugs and discuss recent progress in identifying novel pharmacological targets and new approaches, such as drug repurposing, development of small interfering RNA (siRNA)-based therapies and testing natural products and their derivatives. Some of the discussed approaches have the potential to change the therapeutic landscape of Acanthamoeba infections.


Sign in / Sign up

Export Citation Format

Share Document