High-κ Dielectrics for 4H-Silicon Carbide: Present Status and Future Perspective

Author(s):  
Amna Siddiqui ◽  
Rabia Yasmin Khosa ◽  
Muhammad Usman

Owing to its superior material and electrical properties such as wide bandgap and high breakdown electric field, 4H-silicon carbide (4H-SiC) has shown promise in high power, high temperature, and radiation...

2000 ◽  
Vol 6 (S2) ◽  
pp. 1094-1095
Author(s):  
M. H. Ervin ◽  
K. A. Jones ◽  
M. A. Derenge ◽  
K. W. Kirchnef ◽  
M.C. Wood ◽  
...  

Advancing technology continues to place greater and greater demands on semiconductor devices. It is clear that Si technology alone will not be able to meet all of these demands. Silicon Carbide (SiC) is a promising material for highpower and high-temperature applications, such as SiC devices for controlling power in a more electric vehicle in which the SiC device is cooled by the engine oil (200 C.) SiC is well suited for high-power/temperature applications due to its large bandgap of 3.03 eV (for 6H), high breakdown electric field of 2.4 x 106 V/cm (again for 6H), thermal stability, and chemical inertness. These properties hold the promise of reliable and robust performance, but the latter two also present challenges to fabricating such devices. For instance, a key part of making devices involves selected area doping. This is typically accomplished with ion implantation, because the rate of diffusion is so low, followed with an anneal to remove the implant damage and electrically activate the dopant.


2015 ◽  
Vol 12 (20) ◽  
pp. 20150694-20150694
Author(s):  
Xiangdong Li ◽  
Weihang Zhang ◽  
Mengdi Fu ◽  
Jincheng Zhang ◽  
Haiqing Jiang ◽  
...  

MRS Bulletin ◽  
1997 ◽  
Vol 22 (3) ◽  
pp. 25-29 ◽  
Author(s):  
W.J. Choyke ◽  
G. Pensl

While silicon carbide has been an industrial product for over a century, it is only now emerging as the semiconductor of choice for high-power, high-temperature, and high-radiation environments. From electrical switching and sensors for oil drilling technology to all-electric airplanes, SiC is finding a place which is difficult to fill with presently available Si or GaAs technology. In 1824 Jöns Jakob Berzelius published a paper which suggested there might be a chemical bond between the elements carbon and silicon. It is a quirk of history that he was born in 1779 in Linköping, Sweden where he received his early education, and now, 172 years later, Linkoping University is the center of a national program in Sweden to study the properties of SiC as a semiconductor.


1996 ◽  
Vol 438 ◽  
Author(s):  
V. Heera ◽  
W. Skorupa

AbstractSiC is a promising semiconductor material for high-power/high-frequency and hightemperature electronic applications. For selective doping of SiC ion implantation is the only possible process. However, relatively little is known about ion implantation and annealing effects in SiC. Compared to ion implantation into Si there is a number of specific features which have to be considered for successful ion beam processing of SiC. A brief review is given on some aspects of ion implantation in and annealing of SiC. The ion implantation effects in SiC are discussed in direct comparison to Si. The following issues are addressed: ion ranges, radiation damage, amorphization, high temperature implantation, ion beim induced crystallization and surface erosion.


2018 ◽  
Vol 924 ◽  
pp. 302-305
Author(s):  
Muhammad Haroon Rashid ◽  
Ants Koel ◽  
Toomas Rang

In the last decade, silicon carbide (SiC) has gained a remarkable position among wide bandgap semiconductors due to its high temperature, high frequency, and high power electronics applications. SiC heterostructures, based on the most prominent polytypes like 3C-SiC, 4H-SiC and 6H-SiC, exhibit distinctive electrical and physical properties that make them promising candidates for high performance optoelectronic applications. The results of simulations of nn-junction 3C-4H/SiC and 6H-4H/SiC heterostructures, at the nanoscale and microscale, are presented in this paper. Nanoscale devices are simulated with QuantumWise Atomistix Toolkit (ATK) software, and microscale devices are simulated with Silvaco TCAD software. Current-voltage (IV) characteristics of nanoscale and microscale simulated devices are compared and discussed. The effects of non-ideal bonding at the heterojunction interface due to lattice misplacements (axial displacement of bonded wafers) are studied using the ATK simulator. These simulations lay the groundwork for the experiments, which are targeted to produce either a photovoltaic device or a light-emitting diode (working in the ultraviolet or terahertz spectra), by direct bonding of SiC polytypes.


2018 ◽  
Vol 112 (3) ◽  
pp. 032101 ◽  
Author(s):  
Xiaodong Yan ◽  
Ivan S. Esqueda ◽  
Jiahui Ma ◽  
Jesse Tice ◽  
Han Wang

Sign in / Sign up

Export Citation Format

Share Document