High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure

2018 ◽  
Vol 112 (3) ◽  
pp. 032101 ◽  
Author(s):  
Xiaodong Yan ◽  
Ivan S. Esqueda ◽  
Jiahui Ma ◽  
Jesse Tice ◽  
Han Wang
Author(s):  
Amna Siddiqui ◽  
Rabia Yasmin Khosa ◽  
Muhammad Usman

Owing to its superior material and electrical properties such as wide bandgap and high breakdown electric field, 4H-silicon carbide (4H-SiC) has shown promise in high power, high temperature, and radiation...


2015 ◽  
Vol 12 (20) ◽  
pp. 20150694-20150694
Author(s):  
Xiangdong Li ◽  
Weihang Zhang ◽  
Mengdi Fu ◽  
Jincheng Zhang ◽  
Haiqing Jiang ◽  
...  

2003 ◽  
Vol 433-436 ◽  
pp. 435-438
Author(s):  
Rudi Ono ◽  
Makato Fujimaki ◽  
Hoon Joo Na ◽  
Satoshi Tanimoto ◽  
Takashi Shinohe ◽  
...  

2009 ◽  
Author(s):  
◽  
Peter A. Norgard

WITHDRAWN - [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] In the not-so-distant future, a need is foreseen for a high-performance, compact switch that is capable of repetitively switching kilovolts to megavolts and several hundred joules, all while delivering a square pulse with a fast current rise time. Many industrial and military applications currently exist that could take advantage of these operating characteristics, and many more are surely to be developed in the coming years. The proposed approach to realizing the goal of producing a fast rise time, high voltage, high energy, repetitive switch technology is to employ a pressurized, flowing oil dielectric switching medium. Oil pressure and oil flow will be used to increase the rate of dielectric recovery following a high energy discharge, thus enabling a much higher operating repetition frequency; oil pressure will be utilized to control gaseous switching byproducts, and oil flow will be utilized to control solid and gaseous switching byproducts. The well-known increase in breakdown electric field strength with increasing oil pressure will be utilized to reduce the gap separation, thus reducing the inductance of the electrical arc and increasing the rise time of the current pulse produced during breakdown. An experiment was designed and undertaken to evaluate the complete statistical performance of the breakdown electric field of an emerging dielectric liquid, poly-[alpha]olefin, with respect to variations in oil pressure, oil flow rate, peak rate of rise of the voltage, and gap separation.


Sign in / Sign up

Export Citation Format

Share Document