A Fluorogenic RNA Aptamers Nanodevice for Low Background Imaging of mRNA in Living Cells

2022 ◽  
Author(s):  
Tingting Xu ◽  
Yao Sun ◽  
Sha Yu ◽  
Shaojun Wu ◽  
Yu Su ◽  
...  

A fluorogenic RNA aptamers nanodevice integrating the entropy-driven RNA amplifier with near-infrared (NIR) light controller, affording high contrast and sensitivity for imaging the low-abundance mRNA in living cells. The design...

2020 ◽  
Author(s):  
Alex Stafford ◽  
Dowon Ahn ◽  
Emily Raulerson ◽  
Kun-You Chung ◽  
Kaihong Sun ◽  
...  

Driving rapid polymerizations with visible to near-infrared (NIR) light will enable nascent technologies in the emerging fields of bio- and composite-printing. However, current photopolymerization strategies are limited by long reaction times, high light intensities, and/or large catalyst loadings. Improving efficiency remains elusive without a comprehensive, mechanistic evaluation of photocatalysis to better understand how composition relates to polymerization metrics. With this objective in mind, a series of methine- and aza-bridged boron dipyrromethene (BODIPY) derivatives were synthesized and systematically characterized to elucidate key structure-property relationships that facilitate efficient photopolymerization driven by visible to NIR light. For both BODIPY scaffolds, halogenation was shown as a general method to increase polymerization rate, quantitatively characterized using a custom real-time infrared spectroscopy setup. Furthermore, a combination of steady-state emission quenching experiments, electronic structure calculations, and ultrafast transient absorption revealed that efficient intersystem crossing to the lowest excited triplet state upon halogenation was a key mechanistic step to achieving rapid photopolymerization reactions. Unprecedented polymerization rates were achieved with extremely low light intensities (< 1 mW/cm<sup>2</sup>) and catalyst loadings (< 50 μM), exemplified by reaction completion within 60 seconds of irradiation using green, red, and NIR light-emitting diodes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Zhiguang Liu ◽  
Huifeng Du ◽  
Chengchun Tang ◽  
Chang-Yin Ji ◽  
...  

AbstractKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.


2021 ◽  
Author(s):  
Bochao Chen ◽  
Shumei Mao ◽  
Yanyan Sun ◽  
Liyuan Sun ◽  
Ning Ding ◽  
...  

A mitochondria-targeted near-infrared fluorescent probe NIR-V with 700 nm emission was designed to monitor cell viscosity changes, which was applied to detect the intracellular viscosity and imagine pancreatic tissue in diabetic mouse model.


2021 ◽  
Author(s):  
Qiaomei Yang ◽  
Liyi Zhou ◽  
Longpeng Peng ◽  
Gangqiang Yuan ◽  
Haiyuan Ding ◽  
...  

Hydrogen sulfide (H2S) is one of the important gaseous signal molecules and plays key roles in various biologically crucial processes. In this work, we report a novel two-photon near-infrared (TP-NIR)...


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Manoj Kumar Mahata ◽  
Ranjit De ◽  
Kang Taek Lee

Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.


Author(s):  
Jiaxin Shen ◽  
Dandan Chen ◽  
Ye Liu ◽  
Guoyang Gao ◽  
Zhihe Liu ◽  
...  

Photodynamic therapy (PDT) is a promising method for cancer therapy and also may initiate unexpected damages to normal cells and tissues. Herein, we developed a near-infrared (NIR) light-activatable nanophotosensitizer, which...


2017 ◽  
Vol 53 (62) ◽  
pp. 8759-8762 ◽  
Author(s):  
Yu Fang ◽  
Wei Chen ◽  
Wen Shi ◽  
Hongyu Li ◽  
Ming Xian ◽  
...  

A new near-infrared fluorescence off–on probe with phenyl 2-(benzoylthio)benzoate as the recognition moiety is developed and applied in imaging H2Sn in living cells and mice in vivo.


Sign in / Sign up

Export Citation Format

Share Document