scholarly journals A facile spectroscopic method for measuring lignin content in lignocellulosic biomass

2021 ◽  
Author(s):  
Fachuang Lu ◽  
Chen Wang ◽  
Mingjie Chen ◽  
Fengxia Yue ◽  
John Ralph

Although measuring lignin contents is a routine operation for biomass compositional analysis in process development aiming at efficient utilization of woody biomass, it is still a challenging task requiring many...

2020 ◽  
Vol 8 (1) ◽  
pp. 48-56
Author(s):  
Adewale Elijah Fadeyi ◽  
Saheed Olatunbosun Akiode ◽  
Stella A Emmanuel ◽  
Olajide Ebenezer Falayi

Agricultural wastes have been identified as a potential lignocellulosic biomass for bioethanol production. An accurate biomass characterization is needed to evaluate the new potential lignocelluloses biosource for biofuel production. This study evaluates the compositional analysis and characterization of three agricultural wastes (melon husk, moringa pod and mango endocarp). The samples were collected locally in Sheda Village, FCT, Abuja, Nigeria. The lignocellulose biomass composition of the samples was determined by using a proven economically viable gravimetric method and the samples were further characterized using the FTIR. The results showed that a significant amount of hemicelluloses content was found, from 19.38% to 27.74% and the highest amount was present in melon musk. The amount of cellulose ranging from 22.49% to 45.84% was found where the highest amount was found in mango endocarp. Lignin content was in the range of 22.62% to 29.87% and melon husk was shown to have the highest amount. The FTIR spectroscopic analysis showed a broad band at 3422.99 cm-1, 3422.66 cm-1, 3422.85 cm-1 (for mango endocarp, melon husk and moringa pod respectively) representing bonded –OH groups. The peak around 1637 cm-1 corresponds to C=C stretching of conjugated carboxylic acids. The aliphatic chains, -CH2- and –CH3, which form the basic structure of cellulose material, were seen at 1205.72, 1204.50 and 1206.24 cm-1. The signals at 1056.15, 1035.80 and 1055.86 cm-1 correspond to C-O-R (alcohols or esters) vibration. The results show that the samples contain significant quantity of lignocellulosic biomass. Thus, the agricultural wastes could be of valuable use in biofuel production.


2018 ◽  
Vol 2 (5) ◽  
pp. 1048-1056 ◽  
Author(s):  
Rui Zhai ◽  
Jinguang Hu ◽  
Jack N. Saddler

The key enzyme activities were selectively inhibited and/or deactivated by water-soluble components derived from pretreated lignocellulosic biomass.


2013 ◽  
Vol 5 (4) ◽  
pp. 669-678 ◽  
Author(s):  
S. Kent Hoekman ◽  
Amber Broch ◽  
Curtis Robbins ◽  
Rick Purcell ◽  
Barbara Zielinska ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 331 ◽  
Author(s):  
Huiyang Bian ◽  
Xinxing Wu ◽  
Jing Luo ◽  
Yongzhen Qiao ◽  
Guigan Fang ◽  
...  

Developing economical and sustainable fractionation technology of lignocellulose cell walls is the key to reaping the full benefits of lignocellulosic biomass. This study evaluated the potential of metal chloride-assisted p-toluenesulfonic acid (p-TsOH) hydrolysis at low temperatures and under acid concentration for the co-production of sugars and lignocellulosic nanofibrils (LCNF). The results indicated that three metal chlorides obviously facilitated lignin solubilization, thereby enhancing the enzymatic hydrolysis efficiency and subsequent cellulose nanofibrillation. The CuCl2-assisted hydrotropic pretreatment was most suitable for delignification, resulting in a relatively higher enzymatic hydrolysis efficiency of 53.2%. It was observed that the higher residual lignin absorbed on the fiber surface, which exerted inhibitory effects on the enzymatic hydrolysis, while the lower lignin content substrates resulted in less entangled LCNF with thinner diameters. The metal chloride-assisted rapid and low-temperature fractionation process has a significant potential in achieving the energy-efficient and cost-effective valorization of lignocellulosic biomass.


2017 ◽  
Vol 3 (1) ◽  
pp. 59 ◽  
Author(s):  
Sanjay Mohan Gupta ◽  
Kamal Kumar ◽  
Rakshit Pathak ◽  
Sanjai Kumar Dwivedi

<p>Lignocellulosic biomasses are promising alternative resource for bio-fuel production. But due to the recalcitrant nature of lignin and hemicellulose, necessitates an efficient pre-treatment process to improve the yield of reducing sugars and maximising the enzymatic hydrolysis efficiency. Catalysed-microwave pre-treatment may be a good alternative as compared to other methods since it can reduce the time and improve the enzymatic activity during hydrolysis. The aim of this study was to evaluate the efficiency of the catalysed-microwave based pre-treatment of lignocellulosic biomass of Camelina sativa straw (CSS) to overcome the recalcitrant nature of cellulosic biomass. The microwave-alkaline (2 % NaOH) pre-treatment of CSS at 250 W for 10 min yields maximum (~422 mg/g) total soluble sugars (TSS) production during hydrolysis. Likewise, the maximum glucose content (~294 mg/g) was measured in 2 % alkaline-microwave pre-treatment for 10 min at RT. However, slight increase in lignin degradation was observed with the increase in alkaline hydroxide concentration and microwave irradiation exposure time. The maximum degradation in lignin content (~83 %) was measured in 3 % alkaline-microwave pre-treatment for 20 min at RT. Our results suggest that the microwave-alkaline pre-treatment approach may be employed for comprehensive utilisation of CSS biomass of Camelina sativa L. cv. Calena (EC643910) for bio-fuel production.</p>


Fuel ◽  
2015 ◽  
Vol 141 ◽  
pp. 39-45 ◽  
Author(s):  
Li Fu ◽  
Scott A. McCallum ◽  
Jianjun Miao ◽  
Courtney Hart ◽  
Gregory J. Tudryn ◽  
...  

2012 ◽  
Vol 67 (1) ◽  
pp. 57-67 ◽  
Author(s):  
S. Murat Sen ◽  
Carlos A. Henao ◽  
Drew J. Braden ◽  
James A. Dumesic ◽  
Christos T. Maravelias

2021 ◽  
Vol 12 ◽  
Author(s):  
Yogesh Kumar Ahlawat ◽  
Akula Nookaraju ◽  
Anne E. Harman-Ware ◽  
Crissa Doeppke ◽  
Ajaya K. Biswal ◽  
...  

The precise role of KNAT7 transcription factors (TFs) in regulating secondary cell wall (SCW) biosynthesis in poplars has remained unknown, while our understanding of KNAT7 functions in other plants is continuously evolving. To study the impact of genetic modifications of homologous and heterologous KNAT7 gene expression on SCW formation in transgenic poplars, we prepared poplar KNAT7 (PtKNAT7) overexpression (PtKNAT7-OE) and antisense suppression (PtKNAT7-AS) vector constructs for the generation of transgenic poplar lines via Agrobacterium-mediated transformation. Since the overexpression of homologous genes can sometimes result in co-suppression, we also overexpressed Arabidopsis KNAT7 (AtKNAT7-OE) in transgenic poplars. In all these constructs, the expression of KNAT7 transgenes was driven by developing xylem (DX)-specific promoter, DX15. Compared to wild-type (WT) controls, many SCW biosynthesis genes downstream of KNAT7 were highly expressed in poplar PtKNAT7-OE and AtKNAT7-OE lines. Yet, no significant increase in lignin content of woody biomass of these transgenic lines was observed. PtKNAT7-AS lines, however, showed reduced expression of many SCW biosynthesis genes downstream of KNAT7 accompanied by a reduction in lignin content of wood compared to WT controls. Syringyl to Guaiacyl lignin (S/G) ratios were significantly increased in all three KNAT7 knockdown and overexpression transgenic lines than WT controls. These transgenic lines were essentially indistinguishable from WT controls in terms of their growth phenotype. Saccharification efficiency of woody biomass was significantly increased in all transgenic lines than WT controls. Overall, our results demonstrated that developing xylem-specific alteration of KNAT7 expression affects the expression of SCW biosynthesis genes, impacting at least the lignification process and improving saccharification efficiency, hence providing one of the powerful tools for improving bioethanol production from woody biomass of bioenergy crops and trees.


Sign in / Sign up

Export Citation Format

Share Document