scholarly journals A method of sequential liquid dispensing for the multiplexed genetic diagnosis of viral infections in a microfluidic device

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Daigo Natsuhara ◽  
Ryogo Saito ◽  
Hiroka Aonuma ◽  
Tatsuya Sakurai ◽  
Shunya Okamoto ◽  
...  

In this study, we introduce polydimethylsiloxane (PDMS)-based microfluidic devices capable of sequential dispensing of samples into multiple reaction microchambers in a single operation to provide a fast and easy sample-to-answer...

Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 387
Author(s):  
Carlos Toshiyuki Matsumi ◽  
Wilson José da Silva ◽  
Fábio Kurt Schneider ◽  
Joaquim Miguel Maia ◽  
Rigoberto E. M. Morales ◽  
...  

Microbubbles have various applications including their use as carrier agents for localized delivery of genes and drugs and in medical diagnostic imagery. Various techniques are used for the production of monodisperse microbubbles including the Gyratory, the coaxial electro-hydrodynamic atomization (CEHDA), the sonication methods, and the use of microfluidic devices. Some of these techniques require safety procedures during the application of intense electric fields (e.g., CEHDA) or soft lithography equipment for the production of microfluidic devices. This study presents a hybrid manufacturing process using micropipettes and 3D printing for the construction of a T-Junction microfluidic device resulting in simple and low cost generation of monodisperse microbubbles. In this work, microbubbles with an average size of 16.6 to 57.7 μm and a polydispersity index (PDI) between 0.47% and 1.06% were generated. When the device is used at higher bubble production rate, the average diameter was 42.8 μm with increased PDI of 3.13%. In addition, a second-order polynomial characteristic curve useful to estimate micropipette internal diameter necessary to generate a desired microbubble size is presented and a linear relationship between the ratio of gaseous and liquid phases flows and the ratio of microbubble and micropipette diameters (i.e., Qg/Ql and Db/Dp) was found.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7493
Author(s):  
Krystian L. Wlodarczyk ◽  
William N. MacPherson ◽  
Duncan P. Hand ◽  
M. Mercedes Maroto-Valer

In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and “know-how” demanding. In this article, we describe an easy-to-implement method developed to integrate various “off-the-shelf” fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors (“pH SensorPlugs” and “FOP-MIV”, respectively), which were “reversibly” attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy’s law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.


Author(s):  
Ahmed Fadl ◽  
Stefanie Demming ◽  
Zongqin Zhang ◽  
Bjo¨rn Hoxhold ◽  
Stephanus Bu¨ttgenbach ◽  
...  

Developing multifunctional devices are essential to realize more efficient Microsystems. With miniaturization processes taking place in many different applications, the rooms for single function microfluidic devices are limited. In this study, we introduce a multifunctional micro fluidic device based on bifurcation geometry which is capable of performing pumping and mixing at the same time. Optical lithography is used to fabricate the designed microfluidic device. The microfluidic device is tested at low actuator frequencies, and ethanol is employed as a working fluid. The operational principles are based on rectifying the oscillatory flows by using bifurcation structures for flow rectification. The results prove the feasibility of the novel design, and results are presented in terms of flow rates and maximum back pressures.


2016 ◽  
Vol 4 (39) ◽  
pp. 9235-9244 ◽  
Author(s):  
Yanlong Xing ◽  
Norbert Esser ◽  
Petra S. Dittrich

In this work, we studied the formation of fibres and particles made of metal salts and derivatives of tetrathiafulvalene (TTF) on a microfluidic device and in a conventional reaction flask, and characterized their morphologies, optical properties and electrical conductivities.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1247-1256 ◽  
Author(s):  
Mimosa Sarma ◽  
Jiyoung Lee ◽  
Sai Ma ◽  
Song Li ◽  
Chang Lu

Scalable microfluidic devices containing reaction and loading chambers were developed to conduct single-cell transcriptomic studies.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 707 ◽  
Author(s):  
Md Mubarak Hossain ◽  
Tanzilur Rahman

Micro-milling is one of the commonly used methods of fabrication of microfluidic devices necessary for cell biological research and application. Commercial micro-milling machines are expensive, and researchers in developing countries can’t afford them. Here, we report the design and the development of a low-cost (<130 USD) micro milling machine and asses the prototyping capabilities of microfeatures in plastic materials. We demonstrate that the developed machine can be used in fabricating the plastic based microfluidic device.


RSC Advances ◽  
2018 ◽  
Vol 8 (66) ◽  
pp. 37693-37699 ◽  
Author(s):  
Dong-Heon Ha ◽  
Dong-Hyeon Ko ◽  
Jin-oh Kim ◽  
Do Jin Im ◽  
Byoung Soo Kim ◽  
...  

Rapid on-demand sacrificial printing techniques using suitable combinations of resin and sacrificial materials would be desirable to fabricate versatile and functional microfluidic devices with complex designs and chemical resistance.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 574-579 ◽  
Author(s):  
M. Adiraj Iyer ◽  
D. T. Eddington

Polydimethylsiloxane (PDMS) is known to absorb small hydrophobic molecules. We propose to leverage this material to store and release small hydrophobic molecules into and from the PDMS matrix. This method could be used to deliver small hydrophobic molecules to microfluidic channels from the walls of a microfluidic device.


RSC Advances ◽  
2017 ◽  
Vol 7 (57) ◽  
pp. 35869-35874 ◽  
Author(s):  
Shunya Okamoto ◽  
Yoshiaki Ukita

This study demonstrates a novel autonomous flow-control technique using siphon-shaped microchannels on a steadily rotating centrifugal microfluidic device.


2012 ◽  
Vol 1498 ◽  
pp. 67-72
Author(s):  
Ruth Choa ◽  
Manav Mehta ◽  
Kangwon Lee ◽  
David Mooney

ABSTRACTAdult bone marrow derived mesenchymal stem cells (MSCs) represent an important source of cells for tissue regeneration. Control of MSC migration and homing is still unclear. The goal of this study was to identify potent chemoattractants for MSCs and characterize MSC chemotaxis using a microfluidic device as a model system and assay platform. The three chemokines compared in this study were CXCL7, CXCL12, and AMD 3100.Microfluidic devices made of polydimethysiloxane (PDMS) were fabricated by soft lithography techniques and designed to generate a stable linear chemokine gradient. Cell movements in response to the gradient were captured by timelapse photos and tracked over 24 hours. Chemokine potency was measured via several chemotaxis parameters including: velocity in the direction of interest (V), center of mass (Mend), forward migration indice (YFMI). The migratory paths of the cells were mapped onto a displacement plot and compared.The following results were measured in the direction of interest (towards higher concentrations of chemokine): For velocity, only cells exposed to CXCL12 had a statistically significant (p=.014) average velocity (V=0.19 ± 0.07 um/min) when compared to the control condition (V=0.06 ±0 .04 um/min). For the center of mass, where the displacement of cells from their starting positions were compared, again only CXCL12 (Mend= 53.9 ± 10.8 um) stimulated statistically significant (p = .013) displacement of cells compared to the control condition (Mend = 19.3 ± 16.1 um). For the forward migration index, the efficiency of cell movement was measured. Indices in both the CXCL12 (YFIM = 0.19 ± 0.08) and CXCL7 (YFIM = 0.09 ±0.03) conditions were statistically significant (p = .023 for CXCL12 and p = .035 for CXCL7) when compared with the control index (YFIM = .04 ± .02).This study demonstrated the use of microfluidic devices as a viable platform for chemotaxis studies. A stable linear chemokine gradient was maintained over a long time scale to obtain cell migration results. CXCL12 was quantitatively determined to be the most potent chemoattractant in this research; these chemoattractive properties promote its use in future developments to control MSC homing.


Sign in / Sign up

Export Citation Format

Share Document