An Interlinked Computational-Experimental Investigation into SnS Nano-Flakes for Field Emission Application

2021 ◽  
Author(s):  
Mamta P. Nasane ◽  
Sachin R. Rondiya ◽  
Chandradip D. Jadhav ◽  
Ganesh Rahane ◽  
Russell William Cross ◽  
...  

Layered binary semiconductor materials have attracted significant interest as field emitters due to their low work function, mechanical stability, high thermal and electrical conductivity. Herein, we report a systematic experimental...

Author(s):  
N. Tamura ◽  
T. Goto ◽  
Y. Harada

On account of its high brightness, the field emission electron source has the advantage that it provides the conventional electron microscope with highly coherent illuminating system and that it directly improves the, resolving power of the scanning electron microscope. The present authors have reported some results obtained with a 100 kV field emission electron microscope.It has been proven, furthermore, that the tungsten emitter as a temperature field emission source can be utilized with a sufficient stability under a modest vacuum of 10-8 ~ 10-9 Torr. The present paper is concerned with an extension of our study on the characteristics of the temperature field emitters.


Author(s):  
P.M. Mul ◽  
B.J.M. Bormans ◽  
L. Schaap

The first Field Emission Guns (FEG) on TEM/STEM instruments were introduced by Philips in 1977. In the past decade these EM400-series microscopes have been very successful, especially in analytical electron microscopy, where the high currents in small probes are particularly suitable. In High Resolution Electron Holography, the high coherence of the FEG has made it possible to approach atomic resolution.Most of these TEM/STEM systems are based on a cold field emitter (CFE). There are, however, a number of disadvantages to CFE’s, because of their very small emission region: the maximum current is limited (a strong disadvantage for high-resolution TEM imaging) and the emission is unstable, requiring special measures to reduce the strong FEG-induced noise. Thermal field emitters (TFE), i.e. a zirconiated field emitter source operating in the thermal or Schottky mode, have been shown to be a viable and attractive alternative to CFE’s. TFE’s have larger emission regions, providing much higher maximum currents, better stability, and reduced sensitivity to vacuum conditions as well as mechanical and electrical interferences.


2013 ◽  
Vol 9 (5) ◽  
pp. 619-623 ◽  
Author(s):  
Shama Parveen ◽  
Samina Husain ◽  
Avshish Kumar ◽  
Javid Ali ◽  
Mubashshir Husain ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1518
Author(s):  
Minsu Kim ◽  
Dabin Park ◽  
Jooheon Kim

Herein, Sb2Se3 and β-Cu2Se nanowires are synthesized via hydrothermal reaction and water evaporation-induced self-assembly methods, respectively. The successful syntheses and morphologies of the Sb2Se3 and β-Cu2Se nanowires are confirmed via X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and field emission transmission electron microscopy (FE-TEM). Sb2Se3 materials have low electrical conductivity which limits application to the thermoelectric generator. To improve the electrical conductivity of the Sb2Se3 and β-Cu2Se nanowires, polyaniline (PANI) is coated onto the surface and confirmed via Fourier-transform infrared spectroscopy (FT-IR), FE-TEM, and XPS analysis. After coating PANI, the electrical conductivities of Sb2Se3/β-Cu2Se/PANI composites were increased. The thermoelectric performance of the flexible Sb2Se3/β-Cu2Se/PANI films is then measured, and the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is shown to provide the highest power factor of 181.61 μW/m·K2 at 473 K. In addition, a thermoelectric generator consisting of five legs of the 70%-Sb2Se3/30%-β-Cu2Se/PANI film is constructed and shown to provide an open-circuit voltage of 7.9 mV and an output power of 80.1 nW at ΔT = 30 K. This study demonstrates that the combination of inorganic thermoelectric materials and flexible polymers can generate power in wearable or portable devices.


Nanoscale ◽  
2021 ◽  
Author(s):  
Bingjun Yang ◽  
Jiangtao Chen ◽  
xiaonan Wu ◽  
Bao Liu ◽  
Lingyang Liu ◽  
...  

A facile method to produce MXene-TiO2 composite is demonstrated for enhanced field emission display applications. The field emission performance of two-dimensional free-standing and linear-shaped field emitters has been systematically investigated...


2014 ◽  
Vol 2014 ◽  
pp. 1-23 ◽  
Author(s):  
Alireza Nojeh

Carbon nanotubes have a host of properties that make them excellent candidates for electron emitters. A significant amount of research has been conducted on nanotube-based field-emitters over the past two decades, and they have been investigated for devices ranging from flat-panel displays to vacuum tubes and electron microscopes. Other electron emission mechanisms from carbon nanotubes, such as photoemission, secondary emission, and thermionic emission, have also been studied, although to a lesser degree than field-emission. This paper presents an overview of the topic, with emphasis on these less-explored mechanisms, although field-emission is also discussed. We will see that not only is electron emission from nanotubes promising for electron-source applications, but also its study could reveal unusual phenomena and open the door to new devices that are not directly related to electron beams.


Nanoscale ◽  
2014 ◽  
Vol 6 (22) ◽  
pp. 13544-13549 ◽  
Author(s):  
Yiren Chen ◽  
Liqin Hu ◽  
Hang Song ◽  
Hong Jiang ◽  
Dabing Li ◽  
...  

A high-efficiency triode structure field emission planar light source was fabricated using optimized tetrapod-like ZnO nanostructures as field emitters.


Sign in / Sign up

Export Citation Format

Share Document