scholarly journals Rheo-SAXS study of shear-induced orientation and relaxation of cellulose nanocrystal and montmorillonite nanoplatelet dispersions

Soft Matter ◽  
2022 ◽  
Author(s):  
Pierre Munier ◽  
Seyed Ehsan Hadi ◽  
Mo Segad ◽  
Lennart Bergström

The shear-induced orientation in the flow direction increases with increasing shear rate. The relaxation of the CNC:MNT in comparison to CNC-only dispersion was found to be strongly retarded due to the addition of MNT, which promotes gel formation.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 964-964
Author(s):  
Erdem Kucukal ◽  
Jane A. Little ◽  
Umut A. Gurkan

Abstract The pathophysiology of sickle cell disease (SCD) involves altered biophysical properties of red blood cells (RBCs) and increased cellular adhesion, which can synergistically trigger recurrent and painful vaso-occlusive events in the microcirculatory network. RBC adhesion to the endothelial wall is heterogeneous and may initiate such occlusions by disrupting the local flow thus activating platelets and promoting subsequent cell-cell interactions. Moreover, these episodic events take place within a wide range of dynamically changing shear rates at the microscale. In order to better understand the role of shear rate on this process, we quantified shear-dependent RBC adhesion to endothelial proteins fibronectin (FN) and laminin (LN) utilizing a microfluidic system that can simulate physiologically relevant shear gradients of microcirculatory blood flow at a single flow rate. Whole blood samples were collected from 20 patients (10 males and 10 females) with homozygous SCD (HbSS). Samples were perfused through FN and LN immobilized shear-gradient microchannels (Fig. 1A) in which the shear rate continuously changes along flow direction. Computational simulations characterized the flow dynamics near the adherent RBCs (Fig. 1B). Based on the numerical results, a rectangular "field of interest (FOI)", along which the shear rate dropped approximately three-fold, was chosen for quantification of shear-dependent RBC adhesion. We observed changes in RBC adhesion to LN and FN in the shear gradient flow. Figure 1C and 1D show typical adhesion curves of surface adherent RBCs for an individual SCD sample within the FOI. To assess patient specific shear-dependent adhesion, we defined a parameter, "shear dependent adhesion rate (SDAR)", which is the slope of the adhesion curves based on normalized RBC adhesion numbers. A higher SDAR value was indicative of marked numbers of adherent RBCs that detach at higher shear rates whereas the effect of shear rate on RBC detachment was less for a lower SDAR. We observed an inverse relationship between SDAR and number of persistently adherent RBCs at high shear rates. Shear-dependent RBC adhesion to LN was heterogeneous among SCD patients. Patients with higher WBC counts constituted the low SDAR population with a threshold SDAR value of 60 (Fig. 1E, p=0.005, ANOVA). WBCs from patients with higher SDARs (and fewer persistently adhered cells) were all within the normal range. Patients in the low SDAR group also had significantly elevated absolute neutrophil counts (Fig. 1F, p=0.006, ANOVA), and ferritin levels (Fig. 1G, p=0.007, ANOVA). The mean ferritin level of those with low SDAR was nearly ten times greater than normal (mean= [3272.3 ± 791.9] μg/L vs. [784.5±219.6] μg/L). No white blood cell (WBC) adhesion was observed in the experiments. Here, we report a novel shear dependent adhesion ratio of sickle RBCs utilizing LN and FN functionalized microchannels. The approach presented here enabled us to create a shear gradient throughout the channel which may simulate the physiological flow conditions in the post-capillary venules. We further analyzed shear-dependent RBC adhesion in a patient specific manner and identified patient groups with low and high SDAR. The findings also suggested a link between lower shear dependent sickle RBC adhesion to LN and patient clinical phenotypes including inflammation and iron overload. Acknowledgments: This work was supported by grant #2013126 from the Doris Duke Charitable Foundation, National Heart Lung and Blood Institute R01HL133574, and National Science Foundation CAREER Award 1552782. Figure 1: Shear-dependent sickle RBC adhesion in microscale flow. (A) Macroscopic image of the shear-gradient microchannel with the arrow indicating flow direction. (B) Velocity and shear rate contours on a 2D plane above the bottom surface. The dashed rectangular area indicates the field of interest (FOI) where the experimental data were obtained. (C, D) Typical distribution of adherent deformable and non-deformable RBCs in LN and FN functionalized microchannels with the shear gradient. Dashed lines represent the adhesion curves and the corresponding equations were used to quantify shear dependent adhesion data. Shear-dependent RBC adhesion was lower (nSDAR<60) in patients with elevated white blood cell counts (E), absolute neutrophil counts (F), and serum ferritin levels (G). The dashed rectangles indicate the normal clinical values. Figure 1 Figure 1. Disclosures Little: Hemex Health: Equity Ownership. Gurkan: Hemex Health: Employment, Equity Ownership.


Cellulose ◽  
2019 ◽  
Vol 27 (4) ◽  
pp. 2003-2014 ◽  
Author(s):  
Roland Kádár ◽  
Mina Fazilati ◽  
Tiina Nypelö

Abstract Organization of nanoparticles is essential in order to control their light-matter interactions. We present cellulose nanocrystal suspension organization in flow towards a unidirectional state. Visualization of evolving polarization patterns of the cellulose nanocrystal suspensions is combined with steady and oscillatory shear rheology. Elucidation of the chiral nematic mesophase in a continuous process towards unidirectional order enables control of alignment in a suspension precursor for structural films and reveals thus far in situ unrevealed transition states that were not detectable by rheology alone. The coupled analytics enabled the suspensions of interest to be divided into rheological gels and rheological liquid crystal fluids with detailed information on the microtransition phases. Both populations experienced submicron organization and reached macro-scale homogeneity with unidirectional ordering in continued shear. We quantify the time, shear rate, and recovery time after shear to design an optimizing formation process for controlled wet structures as precursors for dry products. Graphic abstract


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4054-4054
Author(s):  
Sangeetha Thangaswamy ◽  
Henny H Billett ◽  
Craig A. Branch ◽  
Sandra M. Suzuka ◽  
Seetharama A Acharya

Abstract Sickle cell disease (SCD) is characterized by painful vaso-occlusive crises, which are, at least in part, due to an interaction of the sickle RBC (sRBC) with the vascular endothelium. Abnormal red blood cells (RBCs) impair blood flow and contribute to microcirculatory complications. Oxidative stress and/or oxidants generated via hemoglobin S (HbS) auto-oxidation play a vital role in the vaso-occlusive event in SCD. Antioxidant therapy mediated free radical scavenging and attenuation of oxidative stress may reduce red cell sickling and be beneficial for SCD. Several studies have described an antioxidant effect of flavonoids on the attenuation of free radical mediated biological membrane damage and the consumption of flavonoids reduces the prevalence of vascular diseases. Among flavonoids, quercetin (QUE) pentahydroxy flavone is the major representative. In vitro, QUE is a strong antioxidant with alkoxyl and peroxy radical scavenging ability. Due to the high susceptibility of sickle RBC to oxidation, QUE could be a useful therapy for SCD. Based on this concept, we examined the potential effect of QUE to improve microvascular function in a murine model of SCD. Methods: To confirm the protective effect of quercetin in vivo, we used Berkeley (Berk) sickle transgenic mice which express exclusively human α- and βS-globins with low levels of γ-globin (∼ 3-5%) generated by Paszty et al 1997. C57BL /6J were used as control wild type. We injected a single dose of QUE at different concentrations (50, 100, 200mg/kg body weight) intraperitoneally under normoxic conditions. Three hours after QUE administration, in vivo intra-vital microscopic observation of post-capillary venules in cremaster muscle was performed. The luminal diameters of the venules (∼ 20-40 µm diameter), centerline red blood cell velocity (Vrbc), adherent, emigrated and rolling leukocytes were measured by the technique described by Kaul et al 2004. Wall shear rate was calculated by Lipowsky et al, 1980. Results: QUE treatment restored blood flow, as evidenced by complete disappearance of vaso-occlusion in the postcapillary venules of Berk mice (Figure 1). However, no significant differences in venular diameter were noted with QUE treatment at any of the dose levels tested (50, 100, 200mg/kg) when compared to untreated Berk and wild type mice. But, when compared to untreated Berk mice, a significant increase in the RBC velocity was demonstrated in a dose dependent fashion (treated: 1.74 ±1.3 mm/sec, 3.02± 1.2 mm/sec, 3.4±0.90 mm/sec for 50, 100, 200 mg/kg dosing respectively vs. untreated 1.01± 1.05mm/sec, p<0.05). A dose of 200 mg level completely neutralized the vaso-occlusion. Increases in wall shear rate (650.01± 252.05 s-1 vs. 180.12± 165.02 s-1, p<6.03x10-6) was also observed in QUE treated vs. untreated Berk. This improvement of blood flow in the postcapillary venules correlated well with observed decreases in leukocyte adhesion (Figure 2A) and leukocyte emigration (Figure 2B) in QUE treated Berk mice (for doses 50, 100, and 200mg/kg) when compared to untreated Berk mice. Leukocyte rolling was also decreased for doses 100 and 200mg/kg (p<0.007, p<0.0002 respectively) after treatment with QUE when compared to untreated Berk and wild type. Figure 1: Representative images showing postcapillary venules in the cremaster muscle microcirculation of Berk mice compared to QUE treated and wild type. Black arrows indicate leukocytes and white arrows indicate the blood flow direction. Figure 1:. Representative images showing postcapillary venules in the cremaster muscle microcirculation of Berk mice compared to QUE treated and wild type. Black arrows indicate leukocytes and white arrows indicate the blood flow direction. Figure 2: Leukocyte adhesion (2A) and emigration (2B) in QUE treated Berk mice at 50, 100 and 200mg/kg doses compared to untreated Berk and wild type. Figure 2:. Leukocyte adhesion (2A) and emigration (2B) in QUE treated Berk mice at 50, 100 and 200mg/kg doses compared to untreated Berk and wild type. Figure 3 Figure 3. Conclusion: We observed an improvement in RBC velocity and wall shear rate, as well as a complete attenuation of leukocyte adhesion, rolling and emigration at the highest dose of QUE treated transgenic sickle Berk mice. We suggest that these effects may be due to a decreased sickle RBC interaction with the vascular bed. Our present data provide a strong basis for the therapeutic application of flavonoids in SCD. Further studies are needed to better understand the mechanism of action in vivo for therapeutic effect in SCD. Disclosures Thangaswamy: AMI Life Sciences Private Ltd: Drug supplied Other. Billett:Selexys Pharmaceuticals: Research Funding.


2001 ◽  
Vol 449 ◽  
pp. 179-200 ◽  
Author(s):  
J. J. FENG ◽  
J. TAO ◽  
L. G. LEAL

We use the Leslie–Ericksen theory to simulate the shear flow of tumbling nematic polymers. The objectives are to explore the onset and evolution of the roll-cell instability and to uncover the flow scenario leading to the nucleation of disclinations. With increasing shear rate, four flow regimes are observed: stable simple shear, steady roll cells, oscillating roll cells and irregular patterns with disclinations. In the last regime, roll cells break up into an irregular and uctuating pattern of eddies. The director is swept into the flow direction in formations called ‘ridges’, which under favourable flow conditions split to form pairs of ± 1 disclinations with non-singular cores. The four regimes are generally consistent with experimental observations, but the mechanism for defect nucleation remains to be verified by more detailed measurements.


2017 ◽  
Vol 727 ◽  
pp. 532-536
Author(s):  
Bao Guang Li ◽  
Yong Zi Xu ◽  
Lu Bai ◽  
Huan Dai ◽  
Cai Cai Xie ◽  
...  

Glycine intercalated Mg/Al-layered double hydroxides (LDH-G)/PVA nanocomposites were prepared via exfoliation-adsorption route based on exfoliation of LDH-G in formamide. The effect of ultrasonic treatment on the fabrication of LDH-G/PVA nanocomposites was investigated. The results of XRD suggest that chains of PVA with double layer arrange into the galleries of restacking LDH platelets with the formation of intercalated-type nanocomposite. Experiments present that ultrasonic treatment on the colloid of LDH-G/PVA increases the amount of platelet which forms the intercalated phase, and improves the regularity of LDH-G arrays in the c direction. It is demonstrated the exfoliated LDH platelets orient in its normal paralleling the flow direction at the high shear rate induced by ultrasound. Simultaneously, under the enhanced temperature caused by long term of ultrasonic treatment, PVA chains extend more and the interaction between PVA chains and LDH layers is reinforced. A model was proposed for various stages of LDH platelets and PVA chains in their mixed colloid during ultrasonic treatment which describes the fabrication of improved hybrid structure.


2015 ◽  
Vol 9 (3) ◽  
pp. 2446-2452
Author(s):  
Tomasz Mariusz Majka ◽  
Marcin Majka ◽  
Muhammad Kamrul Hasan

This article reports the prediction of the theoretical flow curves of polyamide composites by using Vinogradov-Malkin model. Determination of the melt flow index of polymeric materials is the first step to study viscosity-shear rate relationship. The viscosity of the composites at different temperatures were calculated by using the Williams, Landel'a and Ferry (WLF) equation. Other important rheological characteristics were calculated by using appropriate equations. One point method is employed to correlate the changes in viscosity with temperatures. As expected, it is found that incorporation of nanoclay to polyamide 6 (PA6) significantly decreases the Melt Flow Rate of the composites and hence, increases density. Addition of stabilizer further increases density of the PA6/nanoclay composites. The simulations of viscosity curves for PA6 composites were carried out at measurement temperature, 240°C and in the range of 180°C - 350°C with shear rate of 10-1 – 103 1/s. It is found that addition of nanoclay and stabilizer to PA6 decreases viscosity of the composites in the order of PA6/OMMT > PA6 > PA6/I1098 > PA6/OMMT/I1098 > PA6/MMT/I1098 > PA6/MMT. At higher shear rates, viscosity decreases in the same sequence as low shear rates. At further higher shear rates (> 1000 1/s), filler particles are arranged in the flow direction thus exerting no significant effect on viscosity of composites both with and without the stabilizer. During injection moulding in the shear rate ranging from 101 – 104 1/s at 240°C temperature, it is evident that viscosity decreases drastically with increase in shear rate.


2018 ◽  
Vol 5 (8) ◽  
pp. 180601 ◽  
Author(s):  
Toshihiro Omori ◽  
Katja Winter ◽  
Kyosuke Shinohara ◽  
Hiroshi Hamada ◽  
Takuji Ishikawa

Left–right (L-R) asymmetry in the body plan is determined by nodal flow in vertebrate embryos. Shinohara et al. (Shinohara K et al. 2012 Nat. Commun. 3 , 622 ( doi:10.1038/ncomms1624 )) used Dpcd and Rfx3 mutant mouse embryos and showed that only a few cilia were sufficient to achieve L-R asymmetry. However, the mechanism underlying the breaking of symmetry by such weak ciliary flow is unclear. Flow-mediated signals associated with the L-R asymmetric organogenesis have not been clarified, and two different hypotheses—vesicle transport and mechanosensing—are now debated in the research field of developmental biology. In this study, we developed a computational model of the node system reported by Shinohara et al. and examined the feasibilities of the two hypotheses with a small number of cilia. With the small number of rotating cilia, flow was induced locally and global strong flow was not observed in the node. Particles were then effectively transported only when they were close to the cilia, and particle transport was strongly dependent on the ciliary positions. Although the maximum wall shear rate was also influenced by ciliary position, the mean wall shear rate at the perinodal wall increased monotonically with the number of cilia. We also investigated the membrane tension of immotile cilia, which is relevant to the regulation of mechanotransduction. The results indicated that tension of about 0.1 μN m −1 was exerted at the base even when the fluid shear rate was applied at about 0.1 s −1 . The area of high tension was also localized at the upstream side, and negative tension appeared at the downstream side. Such localization may be useful to sense the flow direction at the periphery, as time-averaged anticlockwise circulation was induced in the node by rotation of a few cilia. Our numerical results support the mechanosensing hypothesis, and we expect that our study will stimulate further experimental investigations of mechanotransduction in the near future.


Author(s):  
Ahmed H. Kamel

Surfactant-based fluids, SB fluids exhibit complex rheological behavior due to substantial structural change caused by the molecules self-assembled colloidal aggregation. Various factors affect their rheological properties. Among these factors, surfactant concentration, shear rate, temperature, and salinity are investigated. One of the most popular surfactants, Aromox® APA-T viscoelastic surfactant (VES) is examined. The study focuses on four different concentrations (1.5%, 2%, 3%, and 4%) over a shear rate ranging from 0.0526 sec−1 to 1944 sec−1 using Bohlin rheometer. For salinity effects, two brine solutions are used; 2 and 4% KCl while for temperature effects, a wide range from ambient temperature of 72°F up to 200°F is covered. The results show that SB fluids exhibit a complex rheological behavior due to its unique nature and the various structures form in the solution. In general, SB fluids at all concentrations exhibit a non-Newtonian pseudo-plastic shear thinning behavior. As the surfactant concentration and/or shear increases, a stronger shear thinning behavior can be seen. Increasing solution salinity promotes formation of rod-like micelles and increases its flexibility. Salinity affects micelles’ growth and their rheological behavior is very sensitive to the nature and structure of the added salt. Different molecular structures are formed; spherical micelles occur first and then increased shear rate and/or salinity promotes the formation of rod-like micelles. Later, rod-like micelles are aligned in the flow direction and form a large super ordered structure of micellar bundles or aggregates called shear induced structure (SIS). Different structures implies different rheological properties. Likewise, rheology improves with increasing temperature up to 100°F. Further increase in temperature reverses the effects and viscosity decreases. However, the effects of temperature and salinity diminish at higher shear rates. Furthermore, a rheology master curve is developed to further understand the rheological behavior of SB fluids and correlate rheological properties to its microscopic structure.


2021 ◽  
Vol 71 (3) ◽  
pp. 290-297
Author(s):  
Yucheng Peng ◽  
Changlei Xia ◽  
Brian Via

Abstract Interest in cellulose nanocrystal (CNC) recently has been growing significantly. Many applications have been developed for CNC and appropriate procedures to handle the CNC suspensions are critical for these applications. In this study, we explored a method evaluating CNC suspensions based on rheological property characterization. We used a rotational viscometer to characterize CNC suspensions at concentrations of 3, 4, 5, and 6 wt.%. We collected primary readings from the rotational viscometer, including spindle rotation speed and torque, to generate apparent viscosity and shear rate for CNC suspensions. We applied three different methods summarized from the literature to calculate apparent viscosity and real shear rate. We critically analyzed differences among calculation results from the three methods. Shearing thinning behaviors obeyed the power law flow model for all CNC suspensions in the shear rate tested. At different concentrations, consistency and flow behavior indices in the model differed in the measured shear rate range. With the same shear rate, higher concentration CNC suspension had a higher apparent viscosity. The apparent viscosity of the CNC suspension was associated with its weight concentration in a power law relationship. This study indicated that a rotational viscometer can be used as a quality control tool for characterizing the rheological properties of the CNC suspensions. We made recommendations for using appropriate calculation methods to obtain shear rate and apparent viscosity of CNC suspensions from the primary readings of a rotational viscometer under different situations.


2012 ◽  
Vol 700 ◽  
pp. 362-381 ◽  
Author(s):  
A. Farutin ◽  
C. Misbah

AbstractViscoelastic properties of complex fluids are usually extracted by applying an oscillatory shear rate ($\dot {\gamma } = \ensuremath{\alpha} {\dot {\gamma } }_{0} \cos (\omega t), $ where $\ensuremath{\alpha} {\dot {\gamma } }_{0} $ is a constant which is small for a linear response to make sense) to the fluid. This leads to a complex effective viscosity where its real part carries information on viscous effects while its imaginary part informs us on elastic properties. We show here theoretically, by taking a dilute vesicle suspension as an example, that application of a pure shearing oscillation misses several interesting microscopic features of the suspension. It is shown that if, in addition to the oscillatory part, a basic constant shear rate is applied to the suspension (so that the total shear rate is $\dot {\gamma } = {\dot {\gamma } }_{0} (1+ \ensuremath{\alpha} \cos \omega t)$, with ${\dot {\gamma } }_{0} $ a constant), then the complex viscosity reveals much more insightful properties of the suspension. First, it is found that the complex viscosity exhibits a resonance for tank-treading vesicles as a function of the frequency of oscillation. This resonance is linked to the fact that vesicles, while being in the stable tank-treading regime (with their main axis having a steady orientation with respect to the flow direction), possess damped oscillatory modes. Second, in the region of parameter space where the vesicle exhibits either vacillating-breathing (permanent oscillations of the main axis about the flow direction and breathing of the shape) or tumbling modes, the complex viscosity shows an infinite number of resonances as a function of the frequency. It is shown that these behaviours markedly differ from that obtained when only the classical oscillation $\dot {\gamma } = \ensuremath{\alpha} {\dot {\gamma } }_{0} \cos (\omega t)$ is applied. The results are obtained numerically by solution of the analytical constitutive equation of a dilute vesicle suspension and confirmed analytically by a linear-response phenomenological theory. It is argued that the same type of behaviour is expected for any suspension of soft entities (capsules, red blood cells, etc.) that exhibit periodic motion under constant shear flow. We shall also discuss the reason why this type of behaviour could not have been captured by existing constitutive laws of complex fluids.


Sign in / Sign up

Export Citation Format

Share Document