scholarly journals Correction: Shear-induced polydomain structures of nematic lyotropic chromonic liquid crystal disodium cromoglycate

Soft Matter ◽  
2021 ◽  
Author(s):  
Hend Baza ◽  
Taras Turiv ◽  
Bing-Xiang Li ◽  
Ruipeng Li ◽  
Benjamin M. Yavitt ◽  
...  

Correction for ‘Shear-induced polydomain structures of nematic lyotropic chromonic liquid crystal disodium cromoglycate’ by Hend Baza et al., Soft Matter, 2020, 16, 8565–8576.

Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 6044
Author(s):  
Efthymia Ramou ◽  
Guilherme Rebordão ◽  
Susana I. C. J. Palma ◽  
Ana C. A. Roque

Liquid crystals represent a fascinating intermediate state of matter, with dynamic yet organized molecular features and untapped opportunities in sensing. Several works report the use of liquid crystal droplets formed by microfluidics and stabilized by surfactants such as sodium dodecyl sulfate (SDS). In this work, we explore, for the first time, the potential of surface-active ionic liquids of the imidazolium family as surfactants to generate in high yield, stable and oriented liquid crystal droplets. Our results show that [C12MIM][Cl], in particular, yields stable, uniform and monodisperse droplets (diameter 74 ± 6 µm; PDI = 8%) with the liquid crystal in a radial configuration, even when compared with the standard SDS surfactant. These findings reveal an additional application for ionic liquids in the field of soft matter.


2015 ◽  
Vol 42 (5) ◽  
pp. 593-622 ◽  
Author(s):  
Goodby ◽  
Mandle ◽  
Davis ◽  
Zhong ◽  
Cowling

2020 ◽  
Vol 117 (12) ◽  
pp. 6437-6445 ◽  
Author(s):  
Hayley R. O. Sohn ◽  
Ivan I. Smalyukh

Malleability of metals is an example of how the dynamics of defects like dislocations induced by external stresses alters material properties and enables technological applications. However, these defects move merely to comply with the mechanical forces applied on macroscopic scales, whereas the molecular and atomic building blocks behave like rigid particles. Here, we demonstrate how motions of crystallites and the defects between them can arise within the soft matter medium in an oscillating electric field applied to a chiral liquid crystal with polycrystalline quasi-hexagonal arrangements of self-assembled topological solitons called “torons.” Periodic oscillations of electric field applied perpendicular to the plane of hexagonal lattices prompt repetitive shear-like deformations of the solitons, which synchronize the electrically powered self-shearing directions. The temporal evolution of deformations upon turning voltage on and off is not invariant upon reversal of time, prompting lateral translations of the crystallites of torons within quasi-hexagonal periodically deformed lattices. We probe how these motions depend on voltage and frequency of oscillating field applied in an experimental geometry resembling that of liquid crystal displays. We study the interrelations between synchronized deformations of the soft solitonic particles and their arrays, and the ensuing dynamics and giant number fluctuations mediated by motions of crystallites, five–seven defects pairs, and grain boundaries in the orderly organizations of solitons. We discuss how our findings may lead to technological and fundamental science applications of dynamic self-assemblies of topologically protected but highly deformable particle-like solitons.


Soft Matter ◽  
2020 ◽  
Vol 16 (45) ◽  
pp. 10386-10386
Author(s):  
Zeynep Sumer ◽  
Alberto Striolo

Correction for ‘Effects of droplet size and surfactants on anchoring in liquid crystal nanodroplets’ by Zeynep Sumer et al., Soft Matter, 2019, 15, 3914–3922, DOI: 10.1039/C9SM00291J.


2018 ◽  
Vol 10 (4) ◽  
pp. 109
Author(s):  
Filip Sala

By lunching the beam into the chiral nematic liquid crystals it is possible to achieve a non-diffractive beam similar to a soliton. This effect is caused by the molecular reorientation i.e. nonlinear response of the material forming the areas of higher refractive index. Diffraction is suppressed by the focusing effect. For appropriate launching conditions it is also possible to achieve a beam which splits into two or more separate beams. Such phenomenon is discussed in this article and analyzed theoretical. To model this effect Fully Vectorial Beam Propagation Method coupled with the Frank-Oseen elastic theory is used. Simulations are performed for various input beam powers, widths, polarization angles and launching positions. Full Text: PDF ReferencesG. Assanto and M. A. Karpierz, "Nematicons: self-localised beams in nematic liquid crystals", Liq. Cryst. 36, 1161–1172 (2009) CrossRef G. Assanto, Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals, John Wiley & Sons Inc. Hoboken, New Jersey (2013) DirectLink A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, "Soliton gating and switching in liquid crystal light valve", Appl. Phys. Lett. 96, 071104 (2010). CrossRef D. Melo, I. Fernandes, F. Moraes, S. Fumeron, and E. Pereira, "Thermal diode made by nematic liquid crystal", Phys. Lett. A 380, 3121 – 3127 (2016). CrossRef U. Laudyn, M. Kwaśny, F. A. Sala, M. A. Karpierz, N. F. Smyth, G. Assanto, "Curved optical solitons subject to transverse acceleration in reorientational soft matter", Sci. Rep. 7, 12385 (2017) CrossRef M. Kwaśny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, G. Assanto, "Self-guided beams in low-birefringence nematic liquid crystals", Phys. Rev. A 86, 013824 (2012) CrossRef F. A. Sala, M. M. Sala-Tefelska, "Optical steering of mutual capacitance in a nematic liquid crystal cell", J. Opt. Soc. Am. B. 35, 133-139 (2018) CrossRef U. A. Laudyn, A. Piccardi, M. Kwasny, M. A. Karpierz, G. Assanto, "Thermo-optic soliton routing in nematic liquid crystals", Opt. Lett. 43, 2296-2299 (2018) CrossRef F. A. Sala, M. M. Sala-Tefelska, M. J. Bujok, J. "Influence of temperature diffusion on molecular reorientation in nematic liquid crystals", Nonlinear Opt. Phys. Mater. 27, 1850011 (2018) CrossRef I-C Khoo Liquid crystals John Wiley & Sons, Inc (2007) DirectLink P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Clarendon Press (1995) DirectLink U. A. Laudyn, P. S. Jung, M. A. Karpierz, G. Assanto, "Quasi two-dimensional astigmatic solitons in soft chiral metastructures", Sci. Rep. 6, 22923 (2016) CrossRef J. Beeckman, A. Madani, P. J. M. Vanbrabant, P. Henneaux, S-P. Gorza, M. Haelterman, "Switching and intrinsic position bistability of soliton beams in chiral nematic liquid crystals", Phys. Rev. A 83, 033832 (2011) CrossRef A. Madani, J. Beeckman, K. Neyts, "An experimental observation of a spatial optical soliton beam and self splitting of beam into two soliton beams in chiral nematic liquid crystal", Opt. Commun. 298–299, 222-226, (2013) CrossRef G. D. Ziogos, E. E. Kriezis, "Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method", Opt. Quant. Electron 40, 10 (2008) CrossRef F. A. Sala, M. A. Karpierz, "Chiral and nonchiral nematic liquid-crystal reorientation induced by inhomogeneous electric fields", J. Opt. Soc. Am. B 29, 1465-1472 (2012) CrossRef F. A. Sala, M. A. Karpierz, "Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals", Opt. Express 20, 13923-13938 (2012) CrossRef F. A. Sala, "Design of false color palettes for grayscale reproduction", Displays, 46, 9-15 (2017) CrossRef


2021 ◽  
Vol 2015 (1) ◽  
pp. 012050
Author(s):  
Maxim V. Gorkunov ◽  
Irina V. Kasyanova ◽  
Vladimir V. Artemov ◽  
Artur R. Geivandov ◽  
Ivan V. Simdyankin ◽  
...  

Abstract We study versatile soft-matter metasurfaces based on self-assembling of nematic liquid crystal on polymer alignment layers processed with a focused ion beam. Digital control of the beam path allows imprinting patterns that induce different complex distributions of the refractive index within several micrometer thick liquid crystal layers. We optimize them to implement various optical functionalities, such as broadband anomalous refraction, wide-aperture focusing, and beam splitting in tens of channels.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 604 ◽  
Author(s):  
Ingo Dierking ◽  
Antônio Martins Figueiredo Neto

We introduce and shortly summarize a variety of more recent aspects of lyotropic liquid crystals (LLCs), which have drawn the attention of the liquid crystal and soft matter community and have recently led to an increasing number of groups studying this fascinating class of materials, alongside their normal activities in thermotopic LCs. The diversity of topics ranges from amphiphilic to inorganic liquid crystals, clays and biological liquid crystals, such as viruses, cellulose or DNA, to strongly anisotropic materials such as nanotubes, nanowires or graphene oxide dispersed in isotropic solvents. We conclude our admittedly somewhat subjective overview with materials exhibiting some fascinating properties, such as chromonics, ferroelectric lyotropics and active liquid crystals and living lyotropics, before we point out some possible and emerging applications of a class of materials that has long been standing in the shadow of the well-known applications of thermotropic liquid crystals, namely displays and electro-optic devices.


2017 ◽  
Vol 46 (19) ◽  
pp. 5935-5949 ◽  
Author(s):  
Pim van der Asdonk ◽  
Paul H. J. Kouwer

Liquid crystal templating: an emerging technique to organise and control soft matter at multiple length scales.


2021 ◽  
Author(s):  
Pengfei Lv ◽  
Xiao Yang ◽  
Hari Krishna Bisoyi ◽  
Hao Zeng ◽  
Xuan Zhang ◽  
...  

Sophisticated soft matter engineering has been endorsed as an emerging paradigm for developing untethered soft robots with built-in electronic functions and biomimetic adaptation capacities. However, the integration of flexible electronic...


Sign in / Sign up

Export Citation Format

Share Document