scholarly journals Biological behavior of nanoparticles with Zr-89 for cancer target based on their distinct surface composition

Author(s):  
Pyeong Seok Choi ◽  
Jun Young Lee ◽  
Yang SeungDae ◽  
Jeong Hoon Park

Nano-sized materials having properties that enable their internalization into target cells using passive targeting systems have been utilized with radioisotopes to track their pharmacokinetics in the body. Here, we report...

2019 ◽  
Vol 19 (11) ◽  
pp. 1382-1387
Author(s):  
Ahmet M. Şenışık ◽  
Çiğdem İçhedef ◽  
Ayfer Y. Kılçar ◽  
Eser Uçar ◽  
Kadir Arı ◽  
...  

Background: Peptide-based agents are used in molecular imaging due to their unique properties, such as rapid clearance from the circulation, high affinity and target selectivity. Many of the radiolabeled peptides have been clinically experienced with diagnostic accuracy. The aim of this study was to investigate in vivo biological behavior of [99mTc(CO)3(H2O)3]+ radiolabeled glycylglycine (GlyGly). Methods: Glycylglycine was radiolabeled with a high radiolabeling yield of 94.69±2%, and quality control of the radiolabeling process was performed by thin layer radiochromatography (TLRC) and High-Performance Liquid Radiochromatography (HPLRC). Lipophilicity study for radiolabeled complex (99mTc(CO)3-Gly-Gly) was carried out using solvent extraction. The in vivo evaluation was performed by both biodistribution and SPECT imaging. Results: The high radiolabelling yield of 99mTc(CO)3-GlyGly was obtained and verified by TLRC and HPLRC as well. According to the in vivo results, SPECT images and biodistribution data are in good accordance. The excretion route from the body was both hepatobiliary and renal. Conclusion: This study shows that 99mTc(CO)3-GlyGly has the potential to be used as a peptide-based imaging agent. Further studies, 99mTc(CO)3-GlyGly can be performed on tumor-bearing animals.


Author(s):  
Reetu Malik ◽  
Jyoti Rathi ◽  
Deeksha Manchanda ◽  
Manish Makhija ◽  
Deepshikha Kushwaha ◽  
...  

Background: The safety and quality of food has been a matter of great discussion throughout the centuries and the application of nanotechnology in the field of nutraceuticals i.e. nanoceuticals has improved the variety and protection of food products in many ways. Objective: Improving the quality and safety of the food products with a view to improve public health and the invasion of nanotechnological advancements in the area of nutrition has resulted in the expansion of novel foods with improved oral bioavailability as well as thermal stability. The main objective of this review is to summarize available literature on nanoceuticals including patents and clinical trials. Method: The review was extracted from the searches performed at PubMed, Google Patents and Google Scholars, etc. Data from these searches was collected and evaluated for getting the information about the available literature on the nanoceuticals. Along with this, some reported patents have also been included in this review in order to conclude the future of nanoceuticals. Result: The literature so obtained was studied thoroughly as per the requirement of the objective of this review. The details of nanoceuticals including major applications, regulatory aspects, some reported patents and clinical trials are compiled here in this review. Nanoceuticals like vitamins, antibiotics, bioactive peptides, probiotics etc., which are dispersed, absorbed or incorporated in nano diameter range sacs, having improved solubility, delivery properties, biological activities, protection against degradation and therefore having improved biological activities and delivery to the target cells and tissues in the body. Different regulations from various countries recommended that any food ingredients which results from the use of nanotechnologies must undergo safety risk assessment standards before entering into the market as nano-food. Conclusion: The idea of “nanoceuticals” is increasing enthusiasm and marketable dairy/food and food supplements. This article focuses on the history, applications, regulation aspects, patents, clinical trials and future prospects of nanoceuticals.


2020 ◽  
Vol 21 (10) ◽  
pp. 3570 ◽  
Author(s):  
Katarzyna Zorena ◽  
Olga Jachimowicz-Duda ◽  
Daniel Ślęzak ◽  
Marlena Robakowska ◽  
Małgorzata Mrugacz

The World Health Organization (WHO) has recognized obesity as one of the top ten threats to human health. It is estimated that the number of obese and overweight people worldwide exceeds the number of those who are undernourished. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of increased release of biologically active adipokines. Adipokines released into the circulating blood, due to their specific receptors on the surface of target cells, act as classic hormones affecting the metabolism of tissues and organs. What is more, adipokines and cytokines may decrease the insulin sensitivity of tissues and induce inflammation and development of chronic complications. Certainly, it can be stated that in an era of a global obesity pandemic, adipokines may gain more and more importance as regards their use in the diagnostic evaluation and treatment of diseases. An extensive search for materials on the role of white, brown and perivascular fatty tissue and obesity-related metabolic and chronic complications was conducted online using PubMed, the Cochrane database and Embase.


2018 ◽  
Vol 92 (14) ◽  
Author(s):  
Melanie H. Dietrich ◽  
Kristen M. Ogden ◽  
Jacob M. Long ◽  
Rebecca Ebenhoch ◽  
Alexandra Thor ◽  
...  

ABSTRACT Mammalian orthoreovirus attachment to target cells is mediated by the outer capsid protein σ1, which projects from the virion surface. The σ1 protein is a homotrimer consisting of a filamentous tail, which is partly inserted into the virion; a body domain constructed from β-spiral repeats; and a globular head with receptor-binding properties. The σ1 tail is predicted to form an α-helical coiled coil. Although σ1 undergoes a conformational change during cell entry, the nature of this change and its contributions to viral replication are unknown. Electron micrographs of σ1 molecules released from virions identified three regions of flexibility, including one at the midpoint of the molecule, that may be involved in its structural rearrangement. To enable a detailed understanding of essential σ1 tail organization and properties, we determined high-resolution structures of the reovirus type 1 Lang (T1L) and type 3 Dearing (T3D) σ1 tail domains. Both molecules feature extended α-helical coiled coils, with T1L σ1 harboring central chloride ions. Each molecule displays a discontinuity (stutter) within the coiled coil and an unexpectedly seamless transition to the body domain. The transition region features conserved interdomain interactions and appears rigid rather than highly flexible. Functional analyses of reoviruses containing engineered σ1 mutations suggest that conserved residues predicted to stabilize the coiled-coil-to-body junction are essential for σ1 folding and encapsidation, whereas central chloride ion coordination and the stutter are dispensable for efficient replication. Together, these findings enable modeling of full-length reovirus σ1 and provide insight into the stabilization of a multidomain virus attachment protein. IMPORTANCE While it is established that different conformational states of attachment proteins of enveloped viruses mediate receptor binding and membrane fusion, less is understood about how such proteins mediate attachment and entry of nonenveloped viruses. The filamentous reovirus attachment protein σ1 binds cellular receptors; contains regions of predicted flexibility, including one at the fiber midpoint; and undergoes a conformational change during cell entry. Neither the nature of the structural change nor its contribution to viral infection is understood. We determined crystal structures of large σ1 fragments for two different reovirus serotypes. We observed an unexpectedly tight transition between two domains spanning the fiber midpoint, which allows for little flexibility. Studies of reoviruses with engineered changes near the σ1 midpoint suggest that the stabilization of this region is critical for function. Together with a previously determined structure, we now have a complete model of the full-length, elongated reovirus σ1 attachment protein.


Author(s):  
Jung-Hyun Kim ◽  
Jeeyoung Kim ◽  
Woo Jin Kim ◽  
Yung Hyun Choi ◽  
Se-Ran Yang ◽  
...  

Growing evidence links prenatal exposure to particulate matter (PM2.5) with reduced lung function and incidence of pulmonary diseases in infancy and childhood. However, the underlying biological mechanisms of how prenatal PM2.5 exposure affects the lungs are incompletely understood, which explains the lack of an ideal in vitro lung development model. Human pluripotent stem cells (hPSCs) have been successfully employed for in vitro developmental toxicity evaluations due to their unique ability to differentiate into any type of cell in the body. In this study, we investigated the developmental toxicity of diesel fine PM (dPM2.5) exposure during hPSC-derived alveolar epithelial cell (AEC) differentiation and three-dimensional (3D) multicellular alveolar organoid (AO) development. We found that dPM2.5 (50 and 100 μg/mL) treatment disturbed the AEC differentiation, accompanied by upregulation of nicotinamide adenine dinucleotide phosphate oxidases and inflammation. Exposure to dPM2.5 also promoted epithelial-to-mesenchymal transition during AEC and AO development via activation of extracellular signal-regulated kinase signaling, while dPM2.5 had no effect on surfactant protein C expression in hPSC-derived AECs. Notably, we provided evidence, for the first time, that angiotensin-converting enzyme 2, a receptor to mediate the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) entry into target cells, and the cofactor transmembrane protease serine 2 were significantly upregulated in both hPSC-AECs and AOs treated with dPM2.5. In conclusion, we demonstrated the potential alveolar development toxicity and the increase of SARS-Cov-2 susceptibility of PM2.5. Our findings suggest that an hPSC-based 2D and 3D alveolar induction system could be a useful in vitro platform for evaluating the adverse effects of environmental toxins and for virus research.


Nanomedicine ◽  
2019 ◽  
Vol 14 (20) ◽  
pp. 2763-2775 ◽  
Author(s):  
Fatih Zor ◽  
Fatma Nurefsan Selek ◽  
Giuseppe Orlando ◽  
David F Williams

Biocompatibility is a very common word that is used within biomaterial science and used for description of the interactions between the foreign material and the body. However, the meaning of biocompatibility as well as the mechanisms that collectively constitutes is still unclear. With the advance of nanotechnology, new concerns have been observed related to biocompatibility of these biomaterials. Due to their small size and variability of their physical and chemical properties, nanoparticles’ (NP) distribution within the body and interactions with the target cells and tissues are highly variable. Here, we tried to provide an overview about NPs, the concept of biocompatibility and biocompatibility-related issues in nanomedicine and several different NPs.


2006 ◽  
Vol 80 (19) ◽  
pp. 9361-9370 ◽  
Author(s):  
Penny A. Rudd ◽  
Roberto Cattaneo ◽  
Veronika von Messling

ABSTRACT Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses.


2015 ◽  
Vol 226 (3) ◽  
pp. R45-R57 ◽  
Author(s):  
Ian S McLennan ◽  
Michael W Pankhurst

Anti-Müllerian hormone (AMH) is a multi-faceted gonadal cytokine. It is present in all vertebrates with its original function in phylogeny being as a regulator of germ cells in both sexes, and as a prime inducer of the male phenotype. Its ancient functions appear to be broadly conserved in mammals, but with this being obscured by its overt role in triggering the regression of the Müllerian ducts in male embryos. Sertoli and ovarian follicular cells primarily release AMH as a prohormone (proAMH), which forms a stable complex (AMHN,C) after cleavage by subtilisin/kexin-type proprotein convertases or serine proteinases. Circulating AMH is a mixture of proAMH and AMHN,C, suggesting that proAMH is activated within the gonads and putatively by its endocrine target-cells. The gonadal expression of the cleavage enzymes is subject to complex regulation, and the preliminary data suggest that this influences the relative proportions of proAMH and AMHN,Cin the circulation. AMH shares an intracellular pathway with the bone morphogenetic protein (BMP) and growth differentiation factor (GDF) ligands. AMH is male specific during the initial stage of development, and theoretically should produce male biases throughout the body by adding a male-specific amplification of BMP/GDF signalling. Consistent with this, some of the male biases in neuron number and the non-sexual behaviours of mice are dependent on AMH. After puberty, circulating levels of AMH are similar in men and women. Putatively, the function of AMH in adulthood maybe to add a gonadal influence to BMP/GDF-regulated homeostasis.


2018 ◽  
Vol 19 (7) ◽  
pp. 2033 ◽  
Author(s):  
Jolanta Majka ◽  
Mateusz Wierdak ◽  
Iwona Brzozowska ◽  
Marcin Magierowski ◽  
Aleksandra Szlachcic ◽  
...  

Melatonin is a tryptophan-derived molecule with pleiotropic activities which is produced in all living organisms. This “sleep” hormone is a free radical scavenger, which activates several anti-oxidative enzymes and mechanisms. Melatonin, a highly lipophilic hormone, can reach body target cells rapidly, acting as the circadian signal to alter numerous physiological functions in the body. This indoleamine can protect the organs against a variety of damaging agents via multiple signaling. This review focused on the role played by melatonin in the mechanism of esophagoprotection, starting with its short-term protection against acute reflux esophagitis and then investigating the long-term prevention of chronic inflammation that leads to gastroesophageal reflux disease (GERD) and Barrett’s esophagus. Since both of these condition are also identified as major risk factors for esophageal carcinoma, we provide some experimental and clinical evidence that supplementation therapy with melatonin could be useful in esophageal injury by protecting various animal models and patients with GERD from erosions, Barrett’s esophagus and neoplasia. The physiological aspects of the synthesis and release of this indoleamine in the gut, including its release into portal circulation and liver uptake is examined. The beneficial influence of melatonin in preventing esophageal injury from acid-pepsin and acid-pepsin-bile exposure in animals as well as the usefulness of melatonin and its precursor, L-tryptophan in prophylactic and supplementary therapy against esophageal disorders in humans, are also discussed.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Preethi Balasubramanian ◽  
Leonie A. Strobel ◽  
Ulrich Kneser ◽  
Aldo R. Boccaccini

AbstractZinc is a vital and beneficial trace element found in the human body. Though found in small proportions, zinc performs a variety of functions in relation to the immune system, cell division, fertility and the body growth and maintenance. In particular, zinc is proven to be a necessary element for the formation, mineralization, development and maintenance of healthy bones. Considering this attractive attributes of zinc, recent research has widely focused on using zinc along with silicate-based bioactive glasses for bone tissue engineering applications. This paper reviews relevant literature discussing the significance of zinc in the human body, along with its ability to enhance antibacterial effects, bioactivity and distinct physical, structural and mechanical properties of bioactive glasses. In this context, even if the present analysis is not meant to be exhaustive and only representative studies are discussed, literature results confirm that it is essential to understand the properties of zinc-containing bioactive glasses with respect to their in vitro biological behavior, possible cytotoxic effects and degradation characteristics to be able to effectively apply these glasses in bone regeneration strategies. Topics attracting increasing research efforts in this field are elaborated in detail in this review, including a summary of the structural, physical, biological and mechanical properties of zinc-containing bioactive glasses. This paper also presents an overview of the various applications in which zinc-containing bioactive glasses are considered for use as bone tissue scaffolds, bone filling granules, bioactive coatings and bone cements, and advances and remaining challenges are highlighted.


Sign in / Sign up

Export Citation Format

Share Document