scholarly journals Functional characterization of a special dicistronic transcription unit encoding histone methyltransferase su(var)3-9 and translation regulator eIF2γ in Tribolium castaneum

2020 ◽  
Vol 477 (16) ◽  
pp. 3059-3074
Author(s):  
Xiaowen Song ◽  
Qisheng Zhong ◽  
Guifang Peng ◽  
Yanhao Ji ◽  
Yuemei Zhang ◽  
...  

Operons are rare in eukaryotes, where they often allow concerted expression of functionally related genes. While a dicistronic transcription unit encoding two unrelated genes, the suppressor of position-effect variegation su(var)3-9 and the gamma subunit of eukaryotic translation initiation factor 2 (eIF2γ) has been found in insecta, and its significance is not well understood. Here, we analyzed the evolutionary history of this transcription unit in arthropods and its functions by using model Coleoptera insect Tribolium castaneum. In T. castaneum, Tcsu(var)3-9 fused into the 80 N-terminal amino acids of TceIF2γ, the transcription of these two genes are resolved by alternative splicing. Phylogenetic analysis supports the natural gene fusion of su(var)3-9 and eIF2γ occurred in the ancestral line of winged insects and silverfish, but with frequent re-fission during the evolution of insects. Functional analysis by using RNAi for these two genes revealed that gene fusion did not invoke novel functions for the gene products. As a histone methyltransferase, Tcsu(var)3-9 is primarily responsible for H3K9 di-, and tri-methylation and plays important roles in metamorphosis and embryogenesis in T. castaneum. While TceIF2γ plays essential roles in T. castaneum by positively regulating protein translation mediated ecdysteroid biosynthesis. The vulnerability of the gene fusion and totally different role of su(var)3-9 and eIF2γ in T. castaneum confirm this gene fusion is a non-selected, constructive neutral evolution event in insect. Moreover, the positive relationship between protein translation and ecdysteroid biosynthesis gives new insights into correlations between translation regulation and hormonal signaling.

Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1157-1167
Author(s):  
Veiko Krauss ◽  
Gunter Reuter

Abstract The Drosophila suppressor of position-effect variegation Su(var)3-9 encodes a heterochromatin-associated protein that is evolutionarily conserved. In contrast to its yeast and mammalian orthologs, the Drosophila Su(var)3-9 gene is fused with the locus encoding the γ subunit of translation initiation factor eIF2. Synthesis of the two unrelated proteins is resolved by alternative splicing. A similar dicistronic Su(var)3-9/eIF-2γ transcription unit was found in Clytus arietis, Leptinotarsa decemlineata, and Scoliopterix libatrix, representing two different orders of holometabolic insects (Coleoptera and Lepidoptera). In all these species the N terminus of the eIF-2γ, which is encoded by the first two exons, is fused to SU(VAR)3-9. In contrast to Drosophila melanogaster, RT-PCR analysis in the two coleopteran and the lepidopteran species demonstrated the usage of a nonconserved splice donor site located within the 3′ end of the SU(VAR)3-9 ORF, resulting in removal of the Su(var)3-9-specific stop codon from the mRNA and complete in-frame fusion of the SU(VAR)3-9 and eIF-2γ ORFs. In the centipede Lithobius forficatus eIF-2γ and Su(var)3-9 are unconnected. Conservation of the dicistronic Su(var)3–9/eIF-2γ transcription unit in the studied insects indicates its origin before radiation of holometabolic insects and represents a useful tool for molecular phylogenetic analysis in arthropods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
YoungJun Ju ◽  
Yaacov Ben-David ◽  
Daniela Rotin ◽  
Eldad Zacksenhaus

AbstractThe eukaryotic elongation factor-2 kinase, eEF2K, which restricts protein translation elongation, has been identified as a potential therapeutic target for diverse types of malignancies including triple negative breast cancer (TNBC). However, the contexts in which eEF2K inhibition is essential in TNBC and its consequences on the proteome are largely unknown. Here we show that genetic or pharmacological inhibition of eEF2K cooperated with glutamine (Gln) starvation, and synergized with glutaminase (GLS1) inhibitors to suppress growth of diverse TNBC cell lines. eEF2K inhibition also synergized with depletion of eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1; 4EBP1), a suppressor of eukaryotic protein translation initiation factor 4E (eIF4E), to induce c-MYC and Cyclin D1 expression, yet attenuate growth of TNBC cells. Proteomic analysis revealed that whereas eEF2K depletion alone uniquely induced Cyclin Dependent Kinase 1 (CDK1) and 6 (CDK6), combined depletion of eEF2K and 4EBP1 resulted in overlapping effects on the proteome, with the highest impact on the ‘Collagen containing extracellular matrix’ pathway (e.g. COL1A1), as well as the amino-acid transporter, SLC7A5/LAT1, suggesting a regulatory loop via mTORC1. In addition, combined depletion of eEF2K and 4EBP1 indirectly reduced the levels of IFN-dependent innate immune response-related factors. Thus, eEF2K inhibition triggers cell cycle arrest/death under unfavourable metabolic conditions such as Gln-starvation/GLS1 inhibition or 4EBP1 depletion, uncovering new therapeutic avenues for TNBC and underscoring a pressing need for clinically relevant eEF2K inhibitors.


Planta Medica ◽  
2021 ◽  
Author(s):  
Garima Agarwal ◽  
Long-Sheng Chang ◽  
Djaja Doel Soejarto ◽  
A. Douglas Kinghorn

AbstractWith about 120 species, Aglaia is one of the largest genera of the plant family Meliaceae (the mahogany plants). It is native to the tropical rainforests of the Indo-Australian region, ranging from India and Sri Lanka eastward to Polynesia and Micronesia. Various Aglaia species have been investigated since the 1960s for their phytochemical constituents and biological properties, with the cyclopenta[b]benzofurans (rocaglates or flavaglines) being of particular interest. Phytochemists, medicinal chemists, and biologists have conducted extensive research in establishing these secondary metabolites as potential lead compounds with antineoplastic and antiviral effects, among others. The varied biological properties of rocaglates can be attributed to their unusual structures and their ability to act as inhibitors of the eukaryotic translation initiation factor 4A (eIF4A), affecting protein translation. The present review provides an update on the recently reported phytochemical constituents of Aglaia species, focusing on rocaglate derivatives. Furthermore, laboratory work performed on investigating the biological activities of these chemical constituents is also covered.


2019 ◽  
Vol 116 (11) ◽  
pp. 4946-4954 ◽  
Author(s):  
Alison J. Inglis ◽  
Glenn R. Masson ◽  
Sichen Shao ◽  
Olga Perisic ◽  
Stephen H. McLaughlin ◽  
...  

Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange–mass spectrometry (HDX-MS) mapped GCN2–ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Ghada Soliman ◽  
C Mary Schooling

Abstract Objectives Type 2 diabetes is a prevalent chronic disease and is often associated with obesity and other comorbidities. The mammalian Target of Rapamycin complex 1 (mTORC1) nutrient-signaling pathway is a central regulator of cell growth and metabolism and is dysregulated in chronic diseases including diabetes and obesity. The eukaryotic translation initiation factor 4E (eIF-4E), a key regulator of gene translation and protein function, is under the control of mTOR and eIF4E Binding Proteins (4E-BPs). eIF-4E binds to the m7G (7-methylguanosine) cap at the 5’-UTR of most eukaryotic mRNA and mediates the recruitment of mRNA on ribosomes to start the protein translation. Both 4E-BP and ribosomal protein S6K kinase (S6K) are downstream effectors regulated by mTORC1 but converge to regulate two independent pathways. We investigated whether the risk of type 2 diabetes varied with genetically predicted eIF-4E and S6K levels using Mendelian Randomization (MR). Methods We estimated the causal role of eIF-4E and S6K plasma proteins, mTOR downstream targets, on type 2 diabetes, based on 16 single nucleotide polymorphisms (SNPs) for eIF-4E and 16 SNPs for S6K at P-value < 5x10−6. We applied these SNPs per exposure to publically available genetic associations with diabetes from the DIAbestes Genetics Replication And Meta-analysis (DIAGRAM) case (n = 26,676), and control (n = 132,532) study (mean age 57.4 years). We meta-analyzed SNP-specific Wald estimates using inverse variance weighting with multiplicative random effects. Sensitivity analysis was conducted using the weighted median, and MR-Egger estimates. Results eIF-4E cap-dependent translation factor was associated with lowered risk of type 2 diabetes with an odds ratio (OR) 0.94 per effect size, 95% confidence interval (0.88, 0.99, P = 0.03) with similar estimates from the weighted median and MR-Egger. S6K was not associated with diabetes, OR 0.95, 95% confidence interval (0.89, 1.01, P = 0.08). Sensitivity analysis using MR-Egger and weighed median analysis did not indicate pleiotropic effects suggesting a unique protective effect of eIF-4E on type 2 diabetes. Conclusions This unbiased Mendelian Randomization estimate is consistent with a causally protective association of eIF-4E on type 2 diabetes. eIF-4E may be a target for intervention by repurposing existing therapeutics to reduce the risk of type 2 diabetes. Funding Sources No specific funding.


2020 ◽  
Vol 48 (7) ◽  
pp. 3816-3831 ◽  
Author(s):  
Tao Liu ◽  
Qinglv Wei ◽  
Jing Jin ◽  
Qingya Luo ◽  
Yi Liu ◽  
...  

Abstract N 6-Methyladenosine (m6A) is the most abundant RNA modification in mammal mRNAs and increasing evidence suggests the key roles of m6A in human tumorigenesis. However, whether m6A, especially its ‘reader’ YTHDF1, targets a gene involving in protein translation and thus affects overall protein production in cancer cells is largely unexplored. Here, using multi-omics analysis for ovarian cancer, we identified a novel mechanism involving EIF3C, a subunit of the protein translation initiation factor EIF3, as the direct target of the YTHDF1. YTHDF1 augments the translation of EIF3C in an m6A-dependent manner by binding to m6A-modified EIF3C mRNA and concomitantly promotes the overall translational output, thereby facilitating tumorigenesis and metastasis of ovarian cancer. YTHDF1 is frequently amplified in ovarian cancer and up-regulation of YTHDF1 is associated with the adverse prognosis of ovarian cancer patients. Furthermore, the protein but not the RNA abundance of EIF3C is increased in ovarian cancer and positively correlates with the protein expression of YTHDF1 in ovarian cancer patients, suggesting modification of EIF3C mRNA is more relevant to its role in cancer. Collectively, we identify the novel YTHDF1-EIF3C axis critical for ovarian cancer progression which can serve as a target to develop therapeutics for cancer treatment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1853-1853 ◽  
Author(s):  
Shirong Li ◽  
MeiHua Jin ◽  
Ailing Liu ◽  
Markus Y. Mapara ◽  
Suzanne Lentzsch

Abstract Abstract 1853 Methods: The translation initiation factor eIF4E is central to protein synthesis in general, and overexpression and/or activation of eIF4E is associated with a malignant phenotype by regulating oncogenic protein translation. Several previous publications indicate that aberrant control of protein synthesis contributes to lymphoma genesis but the exact role of protein translation in multiple myeloma (MM) is less clear. Therefore, understanding the mechanisms that control protein synthesis is an emerging new research area in MM with significant potential for developing innovative therapies. The goal of this study was to determine the role and regulation of eIF4E, as well as the effects of protein translation controlling drugs in MM. Results: By western blot analysis as well as RT-PCR we found that eIF4E protein and mRNA levels are significantly elevated (up to 20 fold) in MM cell lines (H929, RPMI-8226, MM.1S and OPM2) and primary myeloma cells compared to normal plasma cells. Silencing of eIF4E gene expression in RPMI-8226 MM cells by a stable and inducible shRNA system significantly decreased viability of myeloma cells (by ∼ 43%) but not of HEK 293 suggesting a higher dependency of MM cells to protein translation. Next we evaluated different drugs including pomalidomide, rapamycin, pp242, 4EGI-1 and ribavirin, that are known to inhibit protein synthesis for their effects on protein translation in MM. By m7GTP pull down assays we evaluated the effects of the different drugs on eIF4E expression and activity. Rapamycin blocked the phosphorylation of 4EBP1 and eIF4E release, and subsequently inhibited eIF4G binding. The compound 4EGI-1 decreased the interaction between eIF4E and eIF4G. Pomalidomide decreased eIF4E protein expression. All drugs inhibited MM cell DNA synthesis measured by 3H-Thymidine incorporation. Treatment with pomalidomide (10uM), rapamycin (40nM), pp242 (10uM), 4EGI1 (50uM) or ribavirin (50uM) for 48h significantly decreased (p<0.05) proliferation by 43–62% indicating that drugs controlling protein translation inhibit MM growth. We also found that all drugs decreased expression of eIF4E dependent targets such as cyclin D1 and c-myc. Conclusion: Here we show that eIF4E, a key player in translational control, is highly expressed in MM cells and critical for MM growth and survival. Therefore our study helps to understand the function and regulatory mechanism of eIF4E in MM. Further the evaluation of drugs targeting protein translation provides the basis for the optimization of current MM treatment or to open up new strategies such as targeting protein translation in future MM therapy. Disclosures: Lentzsch: Celgene Corp: Consultancy, Research Funding; Onyx: Consultancy; Genzyme: Consultancy; prIME Oncology: Honoraria; Imedex: Honoraria; Clinical Care Options: Honoraria.


2020 ◽  
Author(s):  
Livia E. Clarke ◽  
Carter Van Iderstine ◽  
Sabateeshan Mathavarajah ◽  
Amit Bera ◽  
Moamen Bydoun ◽  
...  

ABSTRACTReduced expression of haploinsufficient tumour suppressor genes is sufficient to alter cellular phenotypes towards carcinogenesis without complete loss of gene expression. As an essential gene, complete expression loss of pre-mRNA processing factor 4 kinase (PRP4K, also known as PRPF4B) is lethal. However, we demonstrate here that reduction of PRP4K levels by small interfering RNA in the mammary epithelial cell lines HMLE and MCF10A can induce partial epithelial-to-mesenchymal transition (EMT) marked by the retention of epithelial markers such as Zo-1 and E-cadherin, and upregulation of mesenchymal markers such as fibronectin and Zeb1. This partial EMT phenotype in non-transformed PRP4K-depleted cells is associated with greater invasive potential in 3D transwell assays, but either reduces or has no effect on 2D migration examined by scratch assay. This is in contrast to depletion of PRP4K in transformed triple-negative MDA-MB-231 breast cancer cells, which results in enhanced migration in 2D and invasion in 3D. Induction of EMT, using EMT-inducing media containing WNT-5a and TGF-β1 or depletion of eukaryotic translation initiation factor 3e (eIF3e) by shRNA, results in marked reduction of PRP4K expression. EMT induced by eIF3e depletion does not affect the transcription of PRP4K mRNA or turn-over of PRP4K protein, but rather reduces its protein translation. Finally, reduced PRP4K levels after eIF3e depletion correlated with increased YAP activity and nuclear localization, the latter being reversed by overexpression of exogenous PRP4K. Together, these data indicate that PRP4K is a haploinsufficient tumour suppressor negatively regulated by EMT, and that when depleted can induce partial EMT and increased cell invasion.


Sign in / Sign up

Export Citation Format

Share Document