scholarly journals Histone H3 N-terminal mimicry drives a novel network of methyl-effector interactions

2021 ◽  
Author(s):  
Jianji Chen ◽  
John Horton ◽  
Cari Sagum ◽  
Jujun Zhou ◽  
Xiaodong Cheng ◽  
...  

The reader ability of PHD fingers is largely limited to the recognition of the histone H3 N-terminal tail. Distinct subsets of PHDs bind either H3K4me3 (a transcriptional activator mark) or H3K4me0 (a transcriptional repressor state). Structural studies have identified common features among the different H3K4me3 effector PHDs, including 1) removal of the initiator methionine residue of H3 to prevent steric interference, 2) a groove where arginine-2 binds, and 3) an aromatic cage that engages methylated lysine-4. We hypothesize that  PHDs  have the ability to engage with non-histone ligands, as long as they adhere to these three rules. A search of the human proteome revealed an enrichment of chromatin-binding proteins that met these criteria, which we termed H3 N-terminal mimicry proteins (H3TMs). Seven H3TMs were selected, and used to screen a protein domain microarray for potential effector domains, and they all had the ability to bind H3K4me3-interacting effector domains. Furthermore, the binding affinity between the VRK1 peptide and the PHD domain of PHF2 is ~3-fold stronger than that of PHF2 and H3K4me3 interaction. The crystal structure of PHF2 PHD finger bound with VRK1 K4me3 peptide provides a molecular basis for stronger binding of VRK1 peptide. In addition, a number of the H3TMs peptides, in their unmethylated form, interact with NuRD transcriptional repressor complex. Our findings provide in vitro evidence that methylation of H3TMs can promote interactions with PHD and Tudor domain-containing proteins and potentially block interactions with the NuRD complex. We propose that these interactions can occur in vivo as well.

2000 ◽  
Vol 20 (7) ◽  
pp. 2455-2465 ◽  
Author(s):  
Sungjoon Kim ◽  
Kettly Cabane ◽  
Michael Hampsey ◽  
Danny Reinberg

ABSTRACT A transcriptional repressor complex encoded by two essential genes,YDR1 and BUR6, was isolated fromSaccharomyces cerevisiae and shown to be the functional counterpart of the human repressor complex Dr1-DRAP1. To elucidate the mechanism of repression by this complex, altered forms of Ydr1 and Bur6 were studied in vitro and in vivo. Deletion of the C-terminal 41 amino acids of Ydr1 resulted in loss of repressor activity and a growth defect, suggesting that the C-terminal domain of Ydr1 functions as a potent transcriptional repressor. A screen for extragenic suppressors of a cold-sensitive ydr1 (ydr1 cs) mutant led to the identification of recessive mutations in theSIN4 gene, which encodes a component of the SRB-MED complex. The sin4 alleles suppressed not onlyydr1 cs mutations but alsobur6 cs mutations. In contrast, deletion of thegal11 gene, whose product is also a member of the SRB-MED complex, failed to suppress ydr1 cs andbur6 cs mutations, indicating that suppression is not due to general defects in the SRB-MED complex. Moreover, one of the sin4 alleles, but not the sin4 deletion, was found to specifically suppress the inviability of aydr1 deletion, demonstrating that the essential function of Ydr1 becomes dispensable in a sin4 mutant background. Biochemical analysis of the SRB-MED complex from the sin4suppressor strain revealed a structurally distinct form of the SRB-MED complex that lacks a subset of mediator subunits. These results define a delicate balance between positive and negative regulators of transcription operating through the Ydr1-Bur6 repressor complex.


2006 ◽  
Vol 26 (21) ◽  
pp. 7871-7879 ◽  
Author(s):  
David G. E. Martin ◽  
Kristin Baetz ◽  
Xiaobing Shi ◽  
Kay L. Walter ◽  
Vicki E. MacDonald ◽  
...  

ABSTRACT The ING (inhibitor of growth) protein family includes a group of homologous nuclear proteins that share a highly conserved plant homeodomain (PHD) finger domain at their carboxyl termini. Members of this family are found in multiprotein complexes that posttranslationally modify histones, suggesting that these proteins serve a general role in permitting various enzymatic activities to interact with nucleosomes. There are three members of the ING family in Saccharomyces cerevisiae: Yng1p, Yng2p, and Pho23p. Yng1p is a component of the NuA3 histone acetyltransferase complex and is required for the interaction of NuA3 with chromatin. To gain insight into the function of the ING proteins, we made use of a genetic strategy to identify genes required for the binding of Yng1p to histones. Using the toxicity of YNG1 overexpression as a tool, we showed that Yng1p interacts with the amino-terminal tail of histone H3 and that this interaction can be disrupted by loss of lysine 4 methylation within this tail. Additionally, we mapped the region of Yng1p required for overexpression of toxicity to the PHD finger, showed that this region capable of binding lysine 4-methylated histone H3 in vitro, and demonstrated that mutations of the PHD finger that abolish binding in vitro are no longer toxic in vivo. These results identify a novel function for the Yng1p PHD finger in promoting stabilization of the NuA3 complex at chromatin through recognition of histone H3 lysine 4 methylation.


2004 ◽  
Vol 279 (50) ◽  
pp. 52456-52464 ◽  
Author(s):  
Chun-Ling Jiang ◽  
Seung-Gi Jin ◽  
Gerd P. Pfeifer

Methyl-CpG-binding domain proteins 2 and 3 (MBD2 and MBD3) are transcriptional repressors that contain methyl-CpG binding domains and are components of a CpG-methylated DNA binding complex named MeCP1. Methyl-CpG-binding protein 3-like 1 (MBD3L1) is a protein with substantial homology to MBD2 and MBD3, but it lacks the methyl-CpG binding domain. MBD3L1 interacts with MBD2 and MBD3in vitroand in yeast two-hybrid assays. Gel shift experiments with a CpG-methylated DNA probe indicate that recombinant MBD3L1 can supershift an MBD2-methylated DNA complex.In vivo, MBD3L1 associates with and colocalizes with MBD2 but not with MBD3 and is recruited to 5-methylcytosine-rich pericentromeric heterochromatin in mouse cells. In glutathioneS-transferase pull-down assays MBD3L1 is found associated with several known components of the MeCP1·NuRD complex, including HDAC1, HDAC2, MTA2, MBD2, RbAp46, and RbAp48, but MBD3 is not found in the MBD3L1-bound fraction. MBD3L1 enhances transcriptional repression of methylated DNA by MBD2. The data are consistent with a role of MBD3L1 as a methylation-dependent transcriptional repressor that may interchange with MBD3 as an MBD2-interacting component of the NuRD complex. MBD3L1 knockout mice were created and were found to be viable and fertile, indicating that MBD3L1 may not be essential or there is functional redundancy (through MBD3) in this pathway. Overall, this study reveals additional complexities in the mechanisms of transcriptional repression by the MBD family proteins.


2004 ◽  
Vol 24 (6) ◽  
pp. 2526-2535 ◽  
Author(s):  
Elisabetta Citterio ◽  
Roberto Papait ◽  
Francesco Nicassio ◽  
Manuela Vecchi ◽  
Paola Gomiero ◽  
...  

ABSTRACT Np95 is an important determinant in cell cycle progression. Its expression is tightly regulated and becomes detectable shortly before the entry of cells into S phase. Accordingly, Np95 is absolutely required for the G1/S transition. Its continued expression throughout the S/G2/M phases further suggests additional roles. Indeed, Np95 has been implicated in DNA damage response. Here, we show that Np95 is tightly bound to chromatin in vivo and that it binds to histones in vivo and in vitro. The binding to histones is direct and shows a remarkable preference for histone H3 and its N-terminal tail. A novel protein domain, the SRA-YDG domain, contained in Np95 is indispensable both for the interaction with histones and for chromatin binding in vivo. Np95 contains a RING finger. We show that this domain confers E3 ubiquitin ligase activity on Np95, which is specific for core histones, in vitro. Finally, Np95 shows specific E3 activity for histone H3 when the endogenous core octamer, coimmunoprecipitating with Np95, is used as a substrate. Histone ubiquitination is an important determinant in the regulation of chromatin structure and gene transcription. Thus, the demonstration that Np95 is a chromatin-associated ubiquitin ligase suggests possible molecular mechanisms for its action as a cell cycle regulator.


2020 ◽  
Vol 6 (4) ◽  
pp. eaax0021 ◽  
Author(s):  
Kezhi Yan ◽  
Justine Rousseau ◽  
Keren Machol ◽  
Laura A. Cross ◽  
Katherine E. Agre ◽  
...  

Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin. Brpf1 deletion obliterates the acylation in mouse embryos and fibroblasts. Moreover, we identify BRPF1 variants in 12 previously unidentified cases of syndromic intellectual disability and demonstrate that these cases and known BRPF1 variants impair H3K23 propionylation. Cardiac anomalies are present in a subset of the cases. H3K23 acylation is also impaired by cancer-derived somatic BRPF1 mutations. Valproate, vorinostat, propionate and butyrate promote H3K23 acylation. These results reveal the dual functionality of BRPF1-KAT6 complexes, shed light on mechanisms underlying related developmental disorders and various cancers, and suggest mutation-based therapy for medical conditions with deficient histone acylation.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2012 ◽  
Vol 442 (3) ◽  
pp. 495-505 ◽  
Author(s):  
Gráinne Barkess ◽  
Yuri Postnikov ◽  
Chrisanne D. Campos ◽  
Shivam Mishra ◽  
Gokula Mohan ◽  
...  

HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiuqi Chen ◽  
Nandakumar Rajasekaran ◽  
Kaixian Liu ◽  
Christian M. Kaiser

Abstract Folding of individual domains in large proteins during translation helps to avoid otherwise prevalent inter-domain misfolding. How folding intermediates observed in vitro for the majority of proteins relate to co-translational folding remains unclear. Combining in vivo and single-molecule experiments, we followed the co-translational folding of the G-domain, encompassing the first 293 amino acids of elongation factor G. Surprisingly, the domain remains unfolded until it is fully synthesized, without collapsing into molten globule-like states or forming stable intermediates. Upon fully emerging from the ribosome, the G-domain transitions to its stable native structure via folding intermediates. Our results suggest a strictly sequential folding pathway initiating from the C-terminus. Folding and synthesis thus proceed in opposite directions. The folding mechanism is likely imposed by the final structure and might have evolved to ensure efficient, timely folding of a highly abundant and essential protein.


2021 ◽  
Author(s):  
Ilaria Romito ◽  
Manuela Porru ◽  
Maria Rita Braghini ◽  
Luca Pompili ◽  
Nadia Panera ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors, alone or in combination with SOR, using in vitro and in vivo models of HCC. Methods The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was then tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. Results TAE226 emerged as the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of the nuclear interactome of FAK. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation causing an increase of histone H3 lysine 27 acetylation, counteracting its trimethylation by decreasing the nuclear amount of HDAC1/2. Conclusions Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduce HCC growth in vitro and in vivo. Our data also highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising therapeutic approaches for HCC.


Science ◽  
2021 ◽  
Vol 371 (6527) ◽  
pp. eabc6663
Author(s):  
Marco Igor Valencia-Sánchez ◽  
Pablo De Ioannes ◽  
Miao Wang ◽  
David M. Truong ◽  
Rachel Lee ◽  
...  

Dot1 (disruptor of telomeric silencing-1), the histone H3 lysine 79 (H3K79) methyltransferase, is conserved throughout evolution, and its deregulation is found in human leukemias. Here, we provide evidence that acetylation of histone H4 allosterically stimulates yeast Dot1 in a manner distinct from but coordinating with histone H2B ubiquitination (H2BUb). We further demonstrate that this stimulatory effect is specific to acetylation of lysine 16 (H4K16ac), a modification central to chromatin structure. We provide a mechanism of this histone cross-talk and show that H4K16ac and H2BUb play crucial roles in H3K79 di- and trimethylation in vitro and in vivo. These data reveal mechanisms that control H3K79 methylation and demonstrate how H4K16ac, H3K79me, and H2BUb function together to regulate gene transcription and gene silencing to ensure optimal maintenance and propagation of an epigenetic state.


Sign in / Sign up

Export Citation Format

Share Document