scholarly journals The 503nm pigment of Escherichia coli

1970 ◽  
Vol 120 (4) ◽  
pp. 771-775 ◽  
Author(s):  
Joyce R. Kamitakahara ◽  
W. J. Polglase

The yield of cell protein was one-third less for streptomycin-dependent Escherichia coli B than for the wild-type parent strain when both were grown aerobically on a medium with limiting glucose, but anaerobically the yield of protein was similar for both strains. The transient pigment absorbing at 503nm that is known to be present in E. coli and other organisms was not detectable in streptomycin-dependent mutants nor in a non-dependent (energy-deficient) revertant. When wild-type E. coli B was grown on limiting glucose–salts medium containing 2,4 dinitrophenol, the yield of cell protein was decreased and formation of the 503nm pigment was inhibited. Fumarase, aconitase and glucose 6-phosphate dehydrogenase were de-repressed in E. coli B cells grown with excess of glucose in a medium containing 2,4-dinitrophenol. In air-oxidized, wild-type E. coli B cells, the 503nm pigment appeared before reduced cytochromes when gluconate was the substrate but failed to appear when succinate was the substrate. The results provide evidence for a role of the 503nm pigment in aerobic energy metabolism, possibly as an electron acceptor from NADPH.

1969 ◽  
Vol 111 (3) ◽  
pp. 279-286 ◽  
Author(s):  
M. B. Coukell ◽  
W. J. Polglase

Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for β-galactosidase in the presence of glucose, although repression of β-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.


Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 774
Author(s):  
Virginio Cepas ◽  
Victoria Ballén ◽  
Yaiza Gabasa ◽  
Miriam Ramírez ◽  
Yuly López ◽  
...  

Current Escherichia coli antibiofilm treatments comprise a combination of antibiotics commonly used against planktonic cells, leading to treatment failure. A better understanding of the genes involved in biofilm formation could facilitate the development of efficient and specific new antibiofilm treatments. A total of 2578 E. coli mutants were generated by transposon insertion, of which 536 were analysed in this study. After sequencing, Tn263 mutant, classified as low biofilm-former (LF) compared to the wild-type (wt) strain (ATCC 25922), showed an interruption in the purL gene, involved in the de novo purine biosynthesis pathway. To elucidate the role of purL in biofilm formation, a knockout was generated showing reduced production of curli fibres, leading to an impaired biofilm formation. These conditions were restored by complementation of the strain or addition of exogenous inosine. Proteomic and transcriptional analyses were performed to characterise the differences caused by purL alterations. Thirteen proteins were altered compared to wt. The corresponding genes were analysed by qRT-PCR not only in the Tn263 and wt, but also in clinical strains with different biofilm activity. Overall, this study suggests that purL is essential for biofilm formation in E. coli and can be considered as a potential antibiofilm target.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2007 ◽  
Vol 75 (7) ◽  
pp. 3315-3324 ◽  
Author(s):  
Eric J. Gauger ◽  
Mary P. Leatham ◽  
Regino Mercado-Lubo ◽  
David C. Laux ◽  
Tyrrell Conway ◽  
...  

ABSTRACT Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.


2006 ◽  
Vol 188 (13) ◽  
pp. 4759-4768 ◽  
Author(s):  
Bonnie B. Stephens ◽  
Star N. Loar ◽  
Gladys Alexandre

ABSTRACT It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.


2006 ◽  
Vol 72 (11) ◽  
pp. 7294-7300 ◽  
Author(s):  
Pieter Moons ◽  
Rob Van Houdt ◽  
Abram Aertsen ◽  
Kristof Vanoirbeek ◽  
Yves Engelborghs ◽  
...  

ABSTRACT We have previously characterized the N-acyl-l-homoserine lactone-based quorum-sensing system of the biofilm isolate Serratia plymuthica RVH1. Here we investigated the role of quorum sensing and of quorum-sensing-dependent production of an antimicrobial compound (AC) on biofilm formation by RVH1 and on the cocultivation of RVH1 and Escherichia coli in planktonic cultures or in biofilms. Biofilm formation of S. plymuthica was not affected by the knockout of splI or splR, the S. plymuthica homologs of the luxI or luxR quorum-sensing gene, respectively, or by the knockout of AC production. E. coli grew well in mixed broth culture with RVH1 until the latter reached 8.5 to 9.5 log CFU/ml, after which the E. coli colony counts steeply declined. In comparison, only a very small decline occurred in cocultures with the S. plymuthica AC-deficient and splI mutants. Complementation with exogenous N-hexanoyl-l-homoserine lactone rescued the wild-type phenotype of the splI mutant. The splR knockout mutant also induced a steep decline of E. coli, consistent with its proposed function as a repressor of quorum-sensing-regulated genes. The numbers of E. coli in 3-day-old mixed biofilms followed a similar pattern, being higher with S. plymuthica deficient in SplI or AC production than with wild-type S. plymuthica, the splR mutant, or the splI mutant in the presence of N-hexanoyl-l-homoserine lactone. Confocal laser scanning microscopic analysis of mixed biofilms established with strains producing different fluorescent proteins showed that E. coli microcolonies were less developed in the presence of RVH1 than in the presence of the AC-deficient mutant.


1999 ◽  
Vol 65 (2) ◽  
pp. 640-647 ◽  
Author(s):  
Michael J. Weickert ◽  
Maria Pagratis ◽  
Christopher B. Glascock ◽  
Richard Blackmore

ABSTRACT High-level expression of soluble recombinant human hemoglobin (rHb) in Escherichia coli was obtained with several hemoglobin variants. Under identical conditions, two rHbs containing the Presbyterian mutation (Asn-108→Lys) in β-globin accumulated to approximately twofold less soluble globin than rHbs containing the corresponding wild-type β-globin subunit accumulated. The β-globin Providence(asp) mutation (Lys-82→Asp) significantly improved soluble rHb accumulation compared to the wild-type β-globin subunit and restored soluble accumulation of rHbs containing the Presbyterian mutation to wild-type levels. The Providenceasp substitution introduced a negatively charged residue into the normally cationic 2,3-bisphosphoglycerate binding pocket, potentially reducing the electrostatic repulsion in the absence of the polyanion. The average soluble globin accumulation when there was coexpression of di-α-globin and β-Lys-82→Asp-globin (rHb9.1) and heme was present in at least a threefold molar excess was 36% ± 3% of the soluble cell protein in E. coli. The average total accumulation (soluble globin plus insoluble globin) was 56% ± 7% of the soluble cell protein. Fermentations yielded 6.0 ± 0.3 g of soluble rHb9.1 per liter 16 h after induction and 6.4 ± 0.2 g/liter 24 h after induction. The average total globin yield was 9.4 g/liter 16 h after induction. High-level accumulation of soluble rHb in E. coli depends on culture conditions, the protein sequence, and the molar ratio of the heme cofactor added.


2008 ◽  
Vol 76 (11) ◽  
pp. 5062-5071 ◽  
Author(s):  
Alfredo G. Torres ◽  
Terry M. Slater ◽  
Shilpa D. Patel ◽  
Vsevolod L. Popov ◽  
Margarita M. P. Arenas-Hernández

ABSTRACT The expression of the long polar fimbriae (LPF) of enterohemorrhagic Escherichia coli (EHEC) O157:H7 is controlled by a tightly regulated process, and, therefore, the role of these fimbriae during binding to epithelial cells has been difficult to establish. We recently found that histone-like nucleoid-structuring protein (H-NS) binds to the regulatory sequence of the E. coli O157:H7 lpf1 operon and “silences” its transcription, while Ler inhibits the action of the H-NS protein and allows lpf1 to be expressed. In the present study, we determined how the deregulated expression of LPF affects binding of EHEC O157:H7 to tissue-cultured cells, correlating the adherence phenotype with lpf1 expression. We tested the adherence properties of EHEC hns mutant and found that this strain adhered 2.8-fold better than the wild type. In contrast, the EHEC ler mutant adhered 2.1-fold less than the wild type. The EHEC hns ler mutant constitutively expressed the lpf genes, and, therefore, we observed that the double mutant adhered 5.6-fold times better than the wild type. Disruption of lpfA in the EHEC hns and hns ler mutants or the addition of anti-LpfA serum caused a reduction in adhesion, demonstrating that the increased adherence was due to the expression of LPF. Immunogold-labeling electron microscopy showed that LPF is present on the surface of EHEC lpfA + strains. Furthermore, we showed that EHEC expressing LPF agglutinates red blood cells from different species and that the agglutination was blocked by the addition of anti-LpfA serum. Overall, our data confirmed that expression of LPF is a tightly regulated process and, for the first time, demonstrated that these fimbriae are associated with adherence and hemagglutination phenotypes in EHEC O157:H7.


2007 ◽  
Vol 190 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Xianxian Liu ◽  
Rebecca E. Parales

ABSTRACT Escherichia coli exhibits chemotactic responses to sugars, amino acids, and dipeptides, and the responses are mediated by methyl-accepting chemotaxis proteins (MCPs). Using capillary assays, we demonstrated that Escherichia coli RP437 is attracted to the pyrimidines thymine and uracil and the response was constitutively expressed under all tested growth conditions. All MCP mutants lacking the MCP Tap protein showed no response to pyrimidines, suggesting that Tap, which is known to mediate dipeptide chemotaxis, is required for pyrimidine chemotaxis. In order to confirm the role of Tap in pyrimidine chemotaxis, we constructed chimeric chemoreceptors (Tapsr and Tsrap), in which the periplasmic and cytoplasmic domains of Tap and Tsr were switched. When Tapsr and Tsrap were individually expressed in an E. coli strain lacking all four native MCPs, Tapsr mediated chemotaxis toward pyrimidines and dipeptides, but Tsrap did not complement the chemotaxis defect. The addition of the C-terminal 19 amino acids from Tsr to the C terminus of Tsrap resulted in a functional chemoreceptor that mediated chemotaxis to serine but not pyrimidines or dipeptides. These results indicate that the periplasmic domain of Tap is responsible for detecting pyrimidines and the Tsr signaling domain confers on Tapsr the ability to mediate efficient chemotaxis. A mutant lacking dipeptide binding protein (DBP) was wild type for pyrimidine taxis, indicating that DBP, which is the primary chemoreceptor for dipeptides, is not responsible for detecting pyrimidines. It is not yet known whether Tap detects pyrimidines directly or via an additional chemoreceptor protein.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2247
Author(s):  
Pawel Kallas ◽  
Håvard J Haugen ◽  
Nikolaj Gadegaard ◽  
John Stormonth-Darling ◽  
Mats Hulander ◽  
...  

Bacterial fimbriae are an important virulence factor mediating adhesion to both biotic and abiotic surfaces and facilitating biofilm formation. The expression of type 1 fimbriae of Escherichia coli is a key virulence factor for urinary tract infections and catheter-associated urinary tract infections, which represent the most common nosocomial infections. New strategies to reduce adhesion of bacteria to surfaces is therefore warranted. The aim of the present study was to investigate how surfaces with different nanotopography-influenced fimbriae-mediated adhesion. Surfaces with three different nanopattern surface coverages made in polycarbonate were fabricated by injection molding from electron beam lithography nanopatterned templates. The surfaces were constructed with features of approximately 40 nm width and 25 nm height with 100 nm, 250 nm, and 500 nm interspace distance, respectively. The role of fimbriae type 1-mediated adhesion was investigated using the E. coli wild type BW25113 and ΔfimA (with a knockout of major pilus protein FimA) and ΔfimH (with a knockout of minor protein FimH) mutants. For the surfaces with nanotopography, all strains adhered least to areas with the largest interpillar distance (500 nm). For the E. coli wild type, no difference in adhesion between surfaces without pillars and the largest interpillar distance was observed. For the deletion mutants, increased adhesion was observed for surfaces without pillars compared to surfaces with the largest interpillar distance. The presence of a fully functional type 1 fimbria decreased the bacterial adhesion to the nanopatterned surfaces in comparison to the mutants.


Sign in / Sign up

Export Citation Format

Share Document