scholarly journals Multiple regions within the promoter of the murine Ifnar-2 gene confer basal and inducible expression

2002 ◽  
Vol 365 (2) ◽  
pp. 355-367 ◽  
Author(s):  
Matthew P. HARDY ◽  
Paul J. HERTZOG ◽  
Catherine M. OWCZAREK

The (murine) type I interferon (IFN) receptor, muIfnar-2, is expressed ubiquitously, and exists as both transmembrane and soluble forms. In the present study we show that the gene encoding muIfnar-2 spans approx. 33kb on mouse chromosome 16, and consists of nine exons and eight introns. The three mRNA splice variants resulting in one transmembrane (muIfnar-2c) and two soluble (muIfnar-2a/2a′) mRNA isoforms are generated by alternative RNA processing of the muIfnar-2 gene. Treatment of a range of murine cell lines with a combination of type I and II IFN showed that the muIfnar-2a and −2c mRNA isoforms were up-regulated independently of each other in L929 fibroblasts and hepa-1c1c7 hepatoma cells, but not in M1 myeloid leukaemia cells. Analysis of the 5′ flanking region of muIfnar-2 using promoter—luciferase reporter constructs defined three regulatory regions: a region proximal to exon 1, conferring high basal expression, a distal region conferring inducible expression, and a negative regulatory region between the two. These data represent the first promoter analysis of a type I IFN receptor and, taken together with our previous data demonstrating high expression levels and dual biological functions for muIfnar-2a protein, suggests that the regulation of muIfnar-2 isoform expression may be an important way of modulating type I IFN responses.

2019 ◽  
Author(s):  
KL Dulwich ◽  
AS Asfor ◽  
AG Gray ◽  
ES Giotis ◽  
MA Skinner ◽  
...  

AbstractIBDV is economically important to the poultry industry. Very virulent (vv) strains cause higher mortality rates than other strains for reasons that remain poorly understood. In order to provide more information on IBDV disease outcome, groups of chickens (n=18) were inoculated with the vv strain, UK661, or the classical strain, F52/70. Birds infected with UK661 had a lower survival rate (50%) compared to F52/70 (80%). There was no difference in peak viral replication in the bursa of Fabricius (BF), but the expression of chicken IFNβ, MX1 and IL-8 was significantly lower in the BF of birds infected with UK661 compared to F52/70 (p<0.05) as quantified by RTqPCR, and this trend was also observed in DT40 cells infected with UK661 or F52/70 (p<0.05). The induction of expression of type I IFN in DF-1 cells stimulated with polyI:C (measured by an IFN-β luciferase reporter assay) was significantly reduced in cells expressing ectopic VP4 from UK661 (p<0.05), but was higher in cells expressing ectopic VP4 from F52/70. Cells infected with a chimeric recombinant IBDV carrying the UK661-VP4 gene in the background of PBG98, an attenuated vaccine strain that induces high levels of innate responses (PBG98-VP4UK661) also showed a reduced level of IFNα and IL-8 compared to cells infected with a chimeric virus carrying the F52/70-VP4 gene (PBG98-VP4F52/70), and birds infected with PBG98-VP4UK661 also had a reduced expression of IFNα in the BF compared to birds infected with PBG98-VP4F52/70. Taken together, these data demonstrate that UK661 induced the expression of lower levels of anti-viral type I IFN and proinflammatory genes than the classical strain in vitro and in vivo and this was, in part, due to strain-dependent differences in the VP4 protein.


2005 ◽  
Vol 387 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Neville J. BUTCHER ◽  
Ajanthy ARULPRAGASAM ◽  
Hui Li GOH ◽  
Tamara DAVEY ◽  
Rodney F. MINCHIN

In humans, a polymorphic gene encodes the drug-metabolizing enzyme NAT1 (arylamine N-acetyltransferase Type 1), which is widely expressed throughout the body. While the protein-coding region of NAT1 is contained within a single exon, examination of the human EST (expressed sequence tag) database at the NCBI revealed the presence of nine separate exons, eight of which were located in the 5′ non-coding region of NAT1. Differential splicing produced at least eight unique mRNA isoforms that could be grouped according to the location of the first exon, which suggested that NAT1 expression occurs from three alternative promoters. Using RT (reverse transcriptase)-PCR, we identified one major transcript in various epithelial cells derived from different tissues. In contrast, multiple transcripts were observed in blood-derived cell lines (CEM, THP-1 and Jurkat), with a novel variant, not identified in the EST database, found in CEM cells only. The major splice variant increased gene expression 9–11-fold in a luciferase reporter assay, while the other isoforms were similar or slightly greater than the control. We examined the upstream region of the most active splice variant in a promoter-reporter assay, and isolated a 257 bp sequence that produced maximal promoter activity. This sequence lacked a TATA box, but contained a consensus Sp1 site and a CAAT box, as well as several other putative transcription-factor-binding sites. Cell-specific expression of the different NAT1 transcripts may contribute to the variation in NAT1 activity in vivo.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yun Young Go ◽  
Yanhua Li ◽  
Zhenhai Chen ◽  
Mingyuan Han ◽  
Dongwan Yoo ◽  
...  

The objective of this study was to investigate the effect of equine arteritis virus (EAV) on type I interferon (IFN) production. Equine endothelial cells (EECs) were infected with the virulent Bucyrus strain (VBS) of EAV and expression of IFN-βwas measured at mRNA and protein levels by quantitative real-time RT-PCR and IFN bioassay using vesicular stomatitis virus expressing the green fluorescence protein (VSV-GFP), respectively. Quantitative RT-PCR results showed that IFN-βmRNA levels in EECs infected with EAV VBS were not increased compared to those in mock-infected cells. Consistent with quantitative RT-PCR, Sendai virus- (SeV-) induced type I IFN production was inhibited by EAV infection. Using an IFN-βpromoter-luciferase reporter assay, we subsequently demonstrated that EAV nsps 1, 2, and 11 had the capability to inhibit type I IFN activation. Of these three nsps, nsp1 exhibited the strongest inhibitory effect. Taken together, these data demonstrate that EAV has the ability to suppress the type I IFN production in EECs and nsp1 may play a critical role to subvert the equine innate immune response.


2013 ◽  
Vol 94 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Jonas Johansson Wensman ◽  
Muhammad Munir ◽  
Srinivas Thaduri ◽  
Katarina Hörnaeus ◽  
Muhammad Rizwan ◽  
...  

Borna disease virus (BDV) is a neurotropic, negative-stranded RNA virus causing persistent infection and progressive neurological disorders in a wide range of warm-blooded animals. The role of the small non-structural X protein in viral pathogenesis is not completely understood. Here we investigated whether the X protein of BDV and avian bornavirus (ABV) interferes with the type I interferon (IFN) system, similar to other non-structural proteins of negative-stranded RNA viruses. In luciferase reporter assays, we found that the X protein of various bornaviruses interfered with the type I IFN system at all checkpoints investigated, in contrast to previously reported findings, resulting in reduced type I IFN secretion.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Chun-Yang Lin ◽  
Meng-Cen Shih ◽  
Hung-Chun Chang ◽  
Kuan-Jung Lin ◽  
Lin-Fang Chen ◽  
...  

Abstract Background Influenza A virus (IAV) evolves strategies to counteract the host antiviral defense for establishing infection. The influenza A virus (IAV) non-structural protein 1 (NS1) is a key viral factor shown to counteract type I IFN antiviral response mainly through targeting RIG-I signaling. Growing evidence suggests that viral RNA sensors RIG-I, TLR3, and TLR7 function to detect IAV RNA in different cell types to induce type I IFN antiviral response to IAV infection. Yet, it remains unclear if IAV NS1 can exploit a common mechanism to counteract these RNA sensing pathways to type I IFN production at once, then promoting viral propagation in the host. Methods Luciferase reporter assays were conducted to determine the effect of NS1 and its mutants on the RIG-I and TLR3 pathways to the activation of the IFN-β and NF-κB promoters. Coimmunoprecipitation and confocal microscopic analyses were used to the interaction and colocalization between NS1 and TRAF3. Ubiquitination assays were performed to study the effect of NS1 and its mutants on TRAF3 ubiquitination. A recombinant mutant virus carrying NS1 E152A/E153A mutations was generated by reverse genetics for biochemical, ex vivo, and in vivo analyses to explore the importance of NS1 E152/E153 residues in targeting the RNA sensing-TRAF3-type I IFN axis and IAV pathogenicity. Results Here we report that NS1 subverts the RIG-I, TLR3, and TLR7 pathways to type I IFN production through targeting TRAF3 E3 ubiquitin ligase. NS1 harbors a conserved FTEE motif (a.a. 150-153), in which the E152/E153 residues are critical for binding TRAF3 to block TRAF3 ubiquitination and type I IFN production by these RNA sensing pathways. A recombinant mutant virus carrying NS1 E152A/E153A mutations induces higher type I IFN production ex vivo and in vivo, and exhibits the attenuated phenotype in infected mice, indicating the importance of E152/E153 residues in IAV pathogenicity. Conclusions Together our work uncovers a novel mechanism of IAV NS1-mediated immune evasion to promote viral infection through targeting the RNA sensing-TRAF3-type I IFN axis.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 843-843
Author(s):  
Cheryll Sanchez-Irizarry ◽  
Michael Malecki ◽  
Woojoong Lee ◽  
Mina Xu ◽  
Stephen C. Blacklow ◽  
...  

Abstract NOTCH1 is a type I transmembrane receptor that regulates T cell development via a signaling pathway that relies on regulated proteolysis. During its maturation, most NOTCH1 is cleaved at a position 70 amino acids external to the transmembrane domain by a furin-like protease, creating extracellular (NEC) and transmembrane (NTM) subunits that are held together non-covalently by a juxtamembranous heterodimerization (HD) domain. Ligand-binding to NEC promotes cleavage by i) metalloproteases at a site in the ectodomain of NTM, followed by ii) gamma-secretase within the transmembrane domain. This releases the NOTCH1 intracellular domain (ICN1), allowing it to translocate to the nucleus and activate target genes. Normally, proteolysis is constrained prior to ligand-binding by an extracellular negative regulatory region consisting of 3 iterated LNR repeats and the N- and C-terminal portions of the HD domain, which flank the furin cleavage site. Recent work has shown that human T-ALL is frequently associated with gain of function mutations that map to the HD domain of NOTCH1. These mutations are distributed in both parts of the HD domain and include point mutations, short insertions, and deletions, suggesting that there might be variation in their relative strength and the mechanisms by which they act. To investigate these issues, we introduced 16 of the HD domain mutations found in primary T-ALLs or T-ALL cell lines into a full-length NOTCH1 cDNA, and tested their ability to activate a NOTCH sensitive luciferase reporter gene. Except for the "mutation" R1609S, which was found in only one primary T-ALL sample, all of the mutations stimulated NOTCH1 signaling. These increases in signaling were abolished by a gamma-secretase inhibitor and were associated with increased rates of metalloprotease-mediated cleavage, indicating that activation proceeds through the normal series of proteolytic events. The mutations also caused gains in function when introduced into NOTCH1 polypeptides lacking the ligand-binding region of NEC, indicating that the HD domain mutations can cause ligand-independent receptor activation. Since NEC dissociation can lead to activation of NOTCH signaling (and is a proposed mechanism for normal ligand-mediated NOTCH activation), one simple way for HD domain mutations to act is through the destabilization of NOTCH1 heterodimers. To test this model, each mutation was introduced into soluble NOTCH1 mini-receptors bearing N-terminal FLAG and C-terminal HA tags. When expressed transiently, the normal NOTCH1 mini-receptor was secreted into conditioned media as a furin-processed heterodimer. Certain activating HD domain mutations, such as L1601P, resulted in complete dissociation of the furin-processed mini-receptor subunits under native conditions, and all other HD domain mutations save one were more sensitive to urea-induced dissociation than normal NOTCH1. The exception was an unusual insertional mutation (identified in the P12-Ichikawa cell line) that introduces a 14 amino acid direct repeat sequence at a position immediately N-terminal of the metalloprotease cleavage site. We hypothesize that this mutation, which was associated with the greatest increases in signaling in NOTCH1 reporter gene assays, displaces protective HD and LNR domain residues and thereby unveils the metalloprotease cleavage site. We conclude that most T-ALL-associated HD domain mutations confer ligand-independent gain-of-function on NOTCH1 receptors, but vary in strength and are likely to act through several distinct mechanisms.


2019 ◽  
Vol 93 (10) ◽  
Author(s):  
Rokusuke Yoshikawa ◽  
Saori Sakabe ◽  
Shuzo Urata ◽  
Jiro Yasuda

ABSTRACT Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel emerging virus that has been identified in China, South Korea, and Japan, and it induces thrombocytopenia and leukocytopenia in humans with a high case fatality rate. SFTSV is pathogenic to humans, while immunocompetent adult mice and golden Syrian hamsters infected with SFTSV never show apparent symptoms. However, mice deficient for the gene encoding the α chain of the alpha- and beta-interferon receptor (Ifnar1−/− mice) and golden Syrian hamsters deficient for the gene encoding signal transducer and activator of transcription 2 (Stat2−/− hamsters) are highly susceptible to SFTSV infection, with infection resulting in death. The nonstructural protein (NSs) of SFTSV has been reported to inhibit the type I IFN response through sequestration of human STAT proteins. Here, we demonstrated that SFTSV induces lethal acute disease in STAT2-deficient mice but not in STAT1-deficient mice. Furthermore, we discovered that NSs cannot inhibit type I IFN signaling in murine cells due to an inability to bind to murine STAT2. Taken together, our results imply that the dysfunction of NSs in antagonizing murine STAT2 can lead to inefficient replication and the loss of pathogenesis of SFTSV in mice. IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTSV, which has been reported in China, South Korea, and Japan. Here, we revealed that mice lacking STAT2, which is an important factor for antiviral innate immunity, are highly susceptible to SFTSV infection. We also show that SFTSV NSs cannot exert its anti-innate immunity activity in mice due to the inability of the protein to bind to murine STAT2. Our findings suggest that the dysfunction of SFTSV NSs as an IFN antagonist in murine cells confers a loss of pathogenicity of SFTSV in mice.


2020 ◽  
Vol 8 (6) ◽  
pp. 790 ◽  
Author(s):  
Markus Fabits ◽  
Vladimir Gonçalves Magalhães ◽  
Baca Chan ◽  
Virginie Girault ◽  
Endrit Elbasani ◽  
...  

The rapid activation of pattern recognition receptor (PRR)-mediated type I interferon (IFN) signaling is crucial for the host response to infection. In turn, human cytomegalovirus (HCMV) must evade this potent response to establish life-long infection. Here, we reveal that the HCMV tegument protein UL35 antagonizes the activation of type I IFN transcription downstream of the DNA and RNA sensors cGAS and RIG-I, respectively. We show that ectopic expression of UL35 diminishes the type I IFN response, while infection with a recombinant HCMV lacking UL35 induces an elevated type I IFN response compared to wildtype HCMV. With a series of luciferase reporter assays and the analysis of signaling kinetics upon HCMV infection, we observed that UL35 downmodulates PRR signaling at the level of the key signaling factor TANK-binding kinase 1 (TBK1). Finally, we demonstrate that UL35 and TBK1 co-immunoprecipitate when co-expressed in HEK293T cells. In addition, we show that a previously reported cellular binding partner of UL35, O-GlcNAc transferase (OGT), post-translationally GlcNAcylates UL35, but that this modification is not required for the antagonizing effect of UL35 on PRR signaling. In summary, we have identified UL35 as the first HCMV protein to antagonize the type I IFN response at the level of TBK1, thereby enriching our understanding of how this important herpesvirus escapes host immune responses.


2004 ◽  
Vol 380 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Matthew P. HARDY ◽  
Anne F. McGETTRICK ◽  
Luke A. J. O'NEILL

TRIF [TIR (Toll/interleukin-1 receptor) domain-containing adaptor protein inducing interferon β; also known as TICAM-1 (TIR-containing adaptor molecule-1)] is a key adaptor for TLR3 (Toll-like receptor 3)- and TLR4-mediated signalling. We have performed a detailed annotation of the human TRIF gene and fine analysis of the basal and inducible promoter elements lying 5´ to the site of initiation of transcription. Human TRIF maps to chromosome 19p13.3 and is flanked upstream by TIP47, which encodes the mannose 6-phosphate receptor binding protein, and downstream by a gene encoding FEM1a, a human homologue of the Caenorhabditis elegans Feminisation-1 gene. Using promoter–reporter deletion constructs, we identified a distal region with the ability to negatively regulate basal transcription and a proximal region containing an Sp1 (stimulating protein 1) site that confers approx. 75% of basal transcriptional activity. TRIF expression can be induced by multiple stimuli, such as the ligands for TLR2, TLR3 and TLR4, and by the pro-inflammatory cytokines tumour necrosis factor α and interleukin-1α. All of these stimuli act via an NF-κB (nuclear factor-κB) motif at position −127. In spite of the presence of a STAT1 (signal transduction and activators of transcription 1) motif at position −330, the addition of type I or type II interferon had no effect on TRIF activity. The human TRIF gene would therefore appear to be regulated primarily by NF-κB.


Sign in / Sign up

Export Citation Format

Share Document