scholarly journals A point mutation in the UDP-glucose pyrophosphorylase gene results in decreases of UDP-glucose and inactivation of glycogen synthase

2003 ◽  
Vol 370 (3) ◽  
pp. 995-1001 ◽  
Author(s):  
Juan-Carlos HIGUITA ◽  
Alberto ALAPE-GIRÓN ◽  
Monica THELESTAM ◽  
Abram KATZ

The regulatory role of UDP-glucose in glycogen biogenesis was investigated in fibroblasts containing a point mutation in the UDP-glucose pyrophosphorylase gene and, consequently, chronically low UDP-glucose levels (Qc). Comparisons were made with cells having the intact gene and restored UDP-glucose levels (G3). Glycogen was always very low in Qc cells. [14C]Glucose incorporation into glycogen was decreased and unaffected by insulin in Qc cells, whereas insulin stimulated glucose incorporation by 50% in G3 cells. Glycogen synthase (GS) activity measured in vitro was virtually absent and the amount of enzyme in Qc cells was decreased by about 50%. The difference in GS activity between cells persisted even when G3 cells were devoid of glycogen. Incubation of G3 cell extracts with either exogenous UDP-glucose or glycogen resulted in increases in GS activity. Incubation of Qc cell extracts with exogenous UDP-glucose had no effect on GS activity; however, incubation with glycogen fully restored enzyme activity. Incubation of G3 cell extracts with radioactive UDP-glucose resulted in substantial binding of ligand to immunoprecipitated GS, whereas no binding was detected in Qc immunoprecipitates. Incubation of Qc cell extracts with exogenous glycogen fully restored UDP-glucose binding in the immunoprecipitate. These data suggest that chronically low UDP-glucose levels in cells result in inactivation of GS, owing to loss of the ability of GS to bind UDP-glucose.

1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


2001 ◽  
Vol 114 (23) ◽  
pp. 4273-4284 ◽  
Author(s):  
Robert G. Goold ◽  
Phillip R. Gordon-Weeks

In recent studies we have demonstrated that glycogen synthase kinase 3β (GSK3β) and its substrate microtubule-associated protein 1B (MAP1B) regulate the microtubule cytoskeleton during axon outgrowth. To further examine the role GSK3β plays in axon outgrowth we investigated the expression of GSK3β and its activity towards MAP1B during nerve growth factor (NGF)-stimulated PC12 cell differentiation. Levels of GSK3β expression increase relatively little during the course of differentiation. However, the expression of a novel GSK3β isoform characterised by a reduced mobility on SDS gels is induced by NGF. Expression of this isoform and the GSK3β-phosphorylated isoform of MAP1B (MAP1B-P) are induced in parallel in response to NGF. This increase lags behind initial neurite formation and the expression of MAP1B in these cells by about two days and coincides with a period when the majority of cells are extending existing neurites. MAP1B and GSK3β are expressed throughout the PC12 cell but MAP1B-P expression is restricted to the growth cones and neurites. Consistent with these observations, we find that neurite extension is more sensitive to the GSK3 inhibitor Li+ than neurite formation and that this correlates with an inhibition of MAP1B phosphorylation. Additionally, GSK3β from PC12 cells not exposed to NGF can not phosphorylate MAP1B in vitro. However, a soluble factor in differentiated PC12 cell extracts depleted of GSK3β can activate MAP1B phosphorylation from undifferentiated cell extracts otherwise devoid of kinase activity. These experiments provide evidence for an NGF-mediated regulation of MAP1B phosphorylation in growing neurites by the induction of a novel isoform of GSK3β.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Gwang Sik Kim ◽  
Young Chul Lee

Med6 protein (Med6p) is a hallmark component of evolutionarily conserved Mediator complexes, and the genuine role of Med6p in Mediator functions remains elusive. For the functional analysis ofSaccharomyces cerevisiaeMed6p (scMed6p), we generated a series of scMed6p mutants harboring a small internal deletion. Genetic analysis of these mutants revealed that three regions (amino acids 33–42 (Δ2), 125–134 (Δ5), and 157–166 (Δ6)) of scMed6p are required for cell viability and are located at highly conserved regions of Med6 homologs. Notably, the Med6p-Δ2 mutant was barely detectable in whole-cell extracts and purified Mediator, suggesting a loss of Mediator association and concurrent rapid degradation. Consistent with this, the recombinant forms of Med6p having these mutations partially (Δ2) restore or fail (Δ5 and Δ6) to restore in vitro transcriptional defects caused by temperature-sensitivemed6mutation. In an artificial recruitment assay, Mediator containing a LexA-fused wild-type Med6p or Med6p-Δ5 was recruited to thelexAoperator region with TBP and activated reporter gene expression. However, the recruitment of Mediator containing LexA-Med6p-Δ6 tolexAoperator region resulted in neither TBP recruitment nor reporter gene expression. This result demonstrates a pivotal role of Med6p in the postrecruitment function of Mediator, which is essential for transcriptional activation by Mediator.


1990 ◽  
Vol 272 (3) ◽  
pp. 797-803 ◽  
Author(s):  
E S Gonos ◽  
J P Goddard

The role of a tRNA-like structure within the 5′-flanking sequence of a human tRNA(Glu) gene in the modulation of its transcription in vitro by HeLa cell extracts has been investigated using several deletion mutants of a recombinant of the gene which lacked part or all of the tRNA-like structure. The transcriptional efficiency of four mutants was the same as that of the wild-type recombinant, two mutants had decreased transcriptional efficiency, one was more efficient, and one, lacking part of the 5′ intragenic control region, was inactive. Correlation of the transcriptional efficiencies with the position and the size of the 5′-flanking sequence that was deleted indicated that the tRNA-like structure may be deleted without loss of transcriptional efficiency. Current models for the modulation of tRNA gene transcription by the 5′-flanking sequence are assessed in the light of the results obtained, and a potential model is presented.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Prachi Umbarkar ◽  
Sultan Tousif ◽  
Anand P Singh ◽  
Joshua C Anderson ◽  
Qinkun Zhang ◽  
...  

Background: Heart failure is the leading cause of mortality, morbidity, and healthcare expenditures worldwide. Numerous studies have implicated Glycogen Synthase Kinase-3 (GSK-3) as a promising therapeutic target for cardiovascular diseases. GSK-3 isoforms appear to play overlapping, unique, and even opposing functions in the heart. Recently our group has identified cardiac fibroblast (CF) GSK3β as a negative regulator of fibrotic remodeling in the ischemic heart. However, the role of CF-GSK3α in cardiac pathophysiology is unknown. Methods and Results: GSK3α was deleted specifically from cardiac fibroblasts or myofibroblasts with tamoxifen-inducible TCF21- or periostin- promoter-driven Cre recombinase. At 2 months of age, WT and KO mice were subjected to cardiac injury, and heart functions were monitored by serial echocardiography. Histological analysis and morphometric studies were performed at 8 weeks post-injury. In both settings, GSK3α deletion restricted fibrotic remodeling and improved cardiac function. To investigate underlying mechanisms, we examined the effect of GSK3α deletion on myofibroblast transformation and pro-fibrotic TGFβ1-SMAD3 signaling in vitro . WT and KO mouse embryonic fibroblasts (MEFs) were treated with TGFβ1. Indeed, a significant reduction in cell migration, collagen gel contraction, and α-SMA expression in TGFβ1 treated KO MEFs confirmed that GSK3α is required for myofibroblast transformation. Surprisingly, GSK3α deletion had no effect on SMAD3 activation, indicating the pro-fibrotic role of GSK3α is SMAD3 independent. At 4 weeks post-injury, total proteins were isolated from CFs of WT and KO animals, and kinome profiling was performed by utilizing PamStation®12 high throughput microarray platform. The upstream kinase analysis identified the downregulation of RAF family kinase activity in GSK3α-KO-CFs. Moreover, mapping of significantly altered kinases against literature annotated interactions generated ERK-centric networks. These findings are consistent with previous studies that implicated ERK in fibrotic diseases across multiple organs. Conclusion: CF-GSK3α plays a causal role in the cardiac pathophysiology that could be therapeutically targeted for future clinical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


1984 ◽  
Vol 247 (5) ◽  
pp. E581-E584
Author(s):  
H. R. Kaslow ◽  
R. D. Eichner

In a previous report (J. Biol. Chem. 254: 4678-4683, 1979), we showed that fasting blunted the ability of insulin to promote glucose incorporation into glycogen in vitro. In addition, we showed that glycogen synthase activity was altered in two ways: the concentration of glucose 6-P causing half-maximal activation increased, and positive cooperativity appeared in the glucose 6-P activation of the enzyme. We now show that streptozotocin-diabetes causes the same changes in glucose incorporation and glycogen synthase activity. We show that these changes in glycogen synthase activity persist during enzyme purification; thus it is likely the changes are a result of a structural alteration of the enzyme. Because glycogenolysis of a glycogen particle from rabbit skeletal muscle also caused the appearance of positive cooperativity, we propose that both phosphorylation and glycogenolysis are involved in the appearance of positive cooperativity.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yu-Tzu Chang ◽  
Chia-Ling Chen ◽  
Chiou-Feng Lin ◽  
Shiou-Ling Lu ◽  
Miao-Huei Cheng ◽  
...  

Group A streptococcus (GAS) imposes a great burden on humans. Efforts to minimize the associated morbidity and mortality represent a critical issue. Glycogen synthase kinase-3β(GSK-3β) is known to regulate inflammatory response in infectious diseases. However, the regulation of GSK-3βin GAS infection is still unknown. The present study investigates the interaction between GSK-3β, NF-κB, and possible related inflammatory mediators in vitro and in a mouse model. The results revealed that GAS could activate NF-κB, followed by an increased expression of inducible nitric oxide synthase (iNOS) and NO production in a murine macrophage cell line. Activation of GSK-3βoccurred after GAS infection, and inhibition of GSK-3βreduced iNOS expression and NO production. Furthermore, GSK-3βinhibitors reduced NF-κB activation and subsequent TNF-αproduction, which indicates that GSK-3βacts upstream of NF-κB in GAS-infected macrophages. Similar to the in vitro findings, administration of GSK-3βinhibitor in an air pouch GAS infection mouse model significantly reduced the level of serum TNF-αand improved the survival rate. The inhibition of GSK-3βto moderate the inflammatory effect might be an alternative therapeutic strategy against GAS infection.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 415 ◽  
Author(s):  
Naveed Sabir ◽  
Tariq Hussain ◽  
Yi Liao ◽  
Jie Wang ◽  
Yinjuan Song ◽  
...  

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.


Sign in / Sign up

Export Citation Format

Share Document