Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses

2008 ◽  
Vol 412 (2) ◽  
pp. 275-285 ◽  
Author(s):  
Saijaliisa Kangasjärvi ◽  
Anna Lepistö ◽  
Kati Hännikäinen ◽  
Mirva Piippo ◽  
Eeva-Maria Luomala ◽  
...  

Photosynthetic light reactions comprise a significant source of hydrogen peroxide (H2O2) in illuminated leaves. APXs (ascorbate peroxidases) reduce H2O2 to water and play an important role in the antioxidant system of plants. In the present study we addressed the significance of chloroplast APXs in stress tolerance and signalling in Arabidopsis thaliana. To this end, T-DNA (transfer DNA) insertion mutants tapx, sapx and tapx sapx, lacking the tAPX (thylakoid-bound APX), sAPX (stromal APX) or both respectively, were characterized. Photo-oxidative stress during germination led to bleaching of chloroplasts in sapx single-mutant and particularly in the tapx sapx double-mutant plants, whereas the greening process of wild-type and tapx plants was only partially impaired. Mature leaves of tapx sapx double mutants were also susceptible to short-term photo-oxidative stress induced by high light or methyl viologen treatments. After a 2-week acclimation period under high light or under low temperature, none of the mutants exhibited enhanced stress symptoms. Immunoblot analysis revealed that high-light-stress-acclimated tapx sapx double mutants compensated for the absence of tAPX and sAPX by increasing the level of 2-cysteine peroxiredoxin. Furthermore, the absence of tAPX and sAPX induced alterations in the transcriptomic profile of tapx sapx double-mutant plants already under quite optimal growth conditions. We conclude that sAPX is particularly important for photoprotection during the early greening process. In mature leaves, tAPX and sAPX are functionally redundant, and crucial upon sudden onset of oxidative stress. Moreover, chloroplast APXs contribute to chloroplast retrograde signalling pathways upon slight fluctuations in the accumulation of H2O2 in chloroplasts.

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 304
Author(s):  
Tatyana Savchenko ◽  
Konstantin Tikhonov

Oxidative stress is an integral component of various stress conditions in plants, and this fact largely determines the substantial overlap in physiological and molecular responses to biotic and abiotic environmental challenges. In this review, we discuss the alterations in central metabolism occurring in plants experiencing oxidative stress. To focus on the changes in metabolite profile associated with oxidative stress per se, we primarily analyzed the information generated in the studies based on the exogenous application of agents, inducing oxidative stress, and the analysis of mutants displaying altered oxidative stress response. Despite of the significant variation in oxidative stress responses among different plant species and tissues, the dynamic and transient character of stress-induced changes in metabolites, and the strong dependence of metabolic responses on the intensity of stress, specific characteristic changes in sugars, sugar derivatives, tricarboxylic acid cycle metabolites, and amino acids, associated with adaptation to oxidative stress have been detected. The presented analysis of the available data demonstrates the oxidative stress-induced redistribution of metabolic fluxes targeted at the enhancement of plant stress tolerance through the prevention of ROS accumulation, maintenance of the biosynthesis of indispensable metabolites, and production of protective compounds. This analysis provides a theoretical basis for the selection/generation of plants with improved tolerance to oxidative stress and the development of metabolic markers applicable in research and routine agricultural practice.


The Analyst ◽  
2019 ◽  
Vol 144 (4) ◽  
pp. 1197-1204 ◽  
Author(s):  
Jianing Mi ◽  
Kun-Peng Jia ◽  
Aparna Balakrishna ◽  
Jian You Wang ◽  
Salim Al-Babili

Apocarotenoid glycosylation serves as a valve regulating carotenoid homeostasis in plants and may contribute to their response to photo-oxidative stress.


2021 ◽  
Author(s):  
Matanel Hipsch ◽  
Nardy Lampl ◽  
Einat Zelinger ◽  
Orel Barda ◽  
Daniel Waiger ◽  
...  

Abstract Environmental stresses are among the major factors that limit crop productivity and plant growth. Various nondestructive approaches for monitoring plant stress states have been developed. However, early sensing of the initial biochemical events during stress responses remains a significant challenge. In this work, we established whole-plant redox imaging using potato (Solanum tuberosum) plants expressing a chloroplast-targeted redox-sensitive green fluorescence protein 2 (roGFP2), which reports the glutathione redox potential (EGSH). Ratiometric imaging analysis demonstrated the probe response to redox perturbations induced by H2O2, DTT, or a GSH biosynthesis inhibitor. We mapped alteration in the chloroplast EGSH under several stress conditions including, high-light, cold and drought. An extremely high increase in chloroplast EGSH was observed under the combination of high-light and low temperatures, conditions that specifically induce PSI photoinhibition. Intriguingly, we noted a higher reduced state in newly developed compared to mature leaves under steady-state and stress conditions, suggesting a graded stress sensitivity as part of the plant strategies for coping with stress. The presented observations suggest that whole-plant redox imaging can serve as a powerful tool for the basic understanding of plant stress responses and applied agricultural research, such as toward improving phenotyping capabilities in breeding programs and early detection of stress responses in the field.


2019 ◽  
Vol 16 (1) ◽  
pp. 93-96
Author(s):  
Khalid Salmeen Almaary

Microorganisms such as Escherichiacoli and salmonella as well other organisms were affected by stress radiation, mechanical nutrient deprivation, high light stress, environmental and osmotic stress. Most of the enteropathogens to cause disease it was important for them to survive in an acid environment as inside the host, these organisms meet in the small intestine of inorganic acid (H+) in the stomach and a combination of inorganic and organic acids (volatile fatty acids). Here I review some pathogens such as E. Coli and salmonella, their mode of activity and survival against oxidative.


2011 ◽  
Vol 38 (5) ◽  
pp. 401 ◽  
Author(s):  
Nick S. Woo ◽  
Matthew J. Gordon ◽  
Stephen R. Graham ◽  
Jan Bart Rossel ◽  
Murray R. Badger ◽  
...  

In this report, we investigate the altered APX2 expression 13 (alx13) mutation of Arabidopsis thaliana, a mutation in glutamine phosphoribosyl pyrophosphate amidotransferase 2 (ATASE2), the primary isoform of the enzyme mediating the first committed step of purine biosynthesis. Light-dependent leaf variegation was exhibited by alx13 plants, with partial shading of alx13 rosettes revealing that the development of chlorosis in emerging leaves is influenced by the growth irradiance of established leaves. Chlorotic sectors arose from emerging green alx13 leaves during a phase of rapid cell division and expansion, which shows that each new cell’s fate is independent of its progenitor. In conjunction with the variegated phenotype, alx13 plants showed altered high light stress responses, including changed expression of genes encoding proteins with antioxidative functions, impaired anthocyanin production and over-accumulation of reactive oxygen species. These characteristics were observed in both photosynthetically-normal green tissues and chlorotic tissues. Chlorotic tissues of alx13 leaves accumulated mRNAs of nuclear-encoded photosynthesis genes that are repressed in other variegated mutants of Arabidopsis. Thus, defective purine biosynthesis impairs chloroplast biogenesis in a light-dependent manner and alters the induction of high light stress pathways and nuclear-encoded photosynthesis genes.


2020 ◽  
Vol 84 ◽  
pp. 43-57
Author(s):  
SL Strom ◽  
O Barberi ◽  
C Mazur ◽  
K Bright ◽  
K Fredrickson

This study investigated the influence of light stress on predator-prey interactions between phytoplankton and heterotrophic dinoflagellates. Among the studied phytoplankton species (dinoflagellates, cryptophytes, and prymnesiophytes), the coccolithophore Emiliania huxleyi was particularly sensitive to light stress, as evidenced by photosynthetic efficiency (Fv/Fm) responses and flow cytometry measures of physiological condition. In addition, E. huxleyi was the only studied prey species that experienced reduced dinoflagellate predation when light stressed: predation on stressed E. huxleyi decreased by an average of 49% relative to controls (range: 23-80%). These light stress and predation responses applied to both calcifying and non-calcifying E. huxleyi strains. High light exposure led to elevated production of dissolved dimethylsulfoniopropionate (DMSP) in one strain of E. huxleyi, a signal that was associated with decreased predation. Direct effects of light stress on the 2 dinoflagellate predators also differed. Predation by Amphidinium longum was strongly decreased by UV exposure, while predation by Oxyrrhis marina was largely unaffected. Our findings highlight the deep diversity that is characteristic of the planktonic protists, and point to chemical signaling as a means by which the effects of light stress can propagate into predation interactions. When defining the ecological niche of planktonic protist species, stress responses should be considered along with the resource acquisition strategies that support growth.


2020 ◽  
Vol 71 (10) ◽  
pp. 2862-2869 ◽  
Author(s):  
Tao Chen ◽  
Mimi Tian ◽  
Yi Han

Abstract Accumulating evidence suggests that hydrogen sulfide (H2S) is an important signaling molecule in plant environmental interactions. The consensus view amongst plant scientists is that environmental stress leads to enhanced production and accumulation of reactive oxygen species (ROS). H2S interacts with the ROS-mediated oxidative stress response network at multiple levels, including the regulation of ROS-processing systems by transcriptional or post-translational modifications. H2S–ROS crosstalk also involves other interacting factors, including nitric oxide, and can affect key cellular processes like autophagy. While H2S often functions to prevent ROS accumulation, it can also act synergistically with ROS signals in processes such as stomatal closure. In this review, we summarize the mechanisms of H2S action and the multifaceted roles of this molecule in plant stress responses. Emphasis is placed on the interactions between H2S, ROS, and the redox signaling network that is crucial for plant defense against environmental threats.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sushma Gurung ◽  
Michael F. Cohen ◽  
Jon Fukuto ◽  
Hideo Yamasaki

Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses.


Sign in / Sign up

Export Citation Format

Share Document