scholarly journals Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe–S clusters and interact with stromal HSP70B

2010 ◽  
Vol 427 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Karolin V. Dorn ◽  
Felix Willmund ◽  
Christian Schwarz ◽  
Christine Henselmann ◽  
Thomas Pohl ◽  
...  

In the present study we report on the identification and characterization of three novel chloroplast-targeted DnaJ-like proteins CDJ3–5, which in addition to their J-domains contain bacterial-type ferredoxin domains. In sequence databases we could identify homologues of CDJ3–5 in green algae, moss and higher plants, but not in cyanobacteria. Phylogenetic analyses allowed us to distinguish two clades containing CDJ3/4 and CDJ5 that must have diverged early in the ancestor of the ‘green lineage’ and have further diversified later on. Molecular and biochemical analysis of CDJ3 and CDJ4 from Chlamydomonas reinhardtii revealed that both proteins are weakly expressed and appear to be localized to the stroma and to thylakoid membranes respectively. The low transcript levels of the CDJ3 and CDJ4 genes declined even further in the initial phase of heat shock, but CDJ3 transcript levels strongly increased after a dark-to-light shift. Accordingly, the Arabidopsis orthologue of CDJ5 was also found to be light-inducible and to be under strong circadian control. CDJ3 and CDJ4 proteins could both be expressed in Escherichia coli and had redox-active Fe–S clusters. In vitro cross-linking studies demonstrated that CDJ3 and CDJ4 interact with chloroplast ATP-bound HSP70B (heat-shock protein 70B), presumably as dimers, and immunoprecipitation studies showed that CDJ3/4 were also in a complex with HSP70B in Chlamydomonas cell extracts. Finally, CDJ3 was found in complexes with apparent molecular masses of approx. 550–2800 kDa, which appeared to contain RNA. We speculate that the CDJ3–5 proteins might represent redox switches that act by recruiting HSP70B for the reorganization of regulatory protein complexes.

1988 ◽  
Vol 8 (3) ◽  
pp. 1206-1215
Author(s):  
C F Clarke ◽  
K Cheng ◽  
A B Frey ◽  
R Stein ◽  
P W Hinds ◽  
...  

Oligomeric protein complexes containing the nuclear oncogene p53 and the simian virus 40 large tumor antigen (D. I. H. Linzer and A. J. Levine, Cell 17:43-51, 1979), the adenovirus E1B 55-kilodalton (kDa) tumor antigen, and the heat shock protein hsc70 (P. Hinds, C. Finlay, A. Frey, and A. J. Levine, Mol. Cell. Biol. 7:2863-2869, 1987) have all been previously described. To begin isolating, purifying, and testing these complexes for functional activities, we have developed a rapid immunoaffinity column purification. p53-protein complexes are eluted from the immunoaffinity column by using a molar excess of a peptide comprising the epitope recognized by the p53 monoclonal antibody. This mild and specific elution condition allows p53-protein interactions to be maintained. The hsc70-p53 complex from rat cells is heterogeneous in size, with some forms of this complex associated with a 110-kDa protein. The maximum apparent molecular mass of such complexes is 660,000 daltons. Incubation with micromolar levels of ATP dissociates this complex in vitro into p53 and hsc70 110-kDa components. Nonhydrolyzable substrates of ATP fail to promote this dissociation of the complex. Murine p53 synthesized in Escherichia coli has been purified 660-fold on the same antibody affinity column and was found to be associated with an E. coli protein of 70 kDa. Immunoblot analysis with specific antisera demonstrated that this E. coli protein was the heat shock protein dnaK, which has extensive sequence homology with the rat hsc70 protein. Incubation of the immunopurified p53-dnaK complex with ATP resulted in the dissociation of the p53-dnaK complex as it did with the p53-hsc70 complex. This remarkable conservation of p53-heat shock protein interactions and the specificity of dissociation reactions suggest a functionally important role for heat shock proteins in their interactions with oncogene proteins.


1992 ◽  
Vol 12 (8) ◽  
pp. 3490-3498 ◽  
Author(s):  
N Hosokawa ◽  
K Hirayoshi ◽  
H Kudo ◽  
H Takechi ◽  
A Aoike ◽  
...  

Transcriptional activation of human heat shock protein (HSP) genes by heat shock or other stresses is regulated by the activation of a heat shock factor (HSF). Activated HSF posttranslationally acquires DNA-binding ability. We previously reported that quercetin and some other flavonoids inhibited the induction of HSPs in HeLa and COLO 320DM cells, derived from a human colon cancer, at the level of mRNA accumulation. In this study, we examined the effects of quercetin on the induction of HSP70 promoter-regulated chloramphenicol acetyltransferase (CAT) activity and on the binding of HSF to the heat shock element (HSE) by a gel mobility shift assay with extracts of COLO 320DM cells. Quercetin inhibited heat-induced CAT activity in COS-7 and COLO 320DM cells which were transfected with plasmids bearing the CAT gene under the control of the promoter region of the human HSP70 gene. Treatment with quercetin inhibited the binding of HSF to the HSE in whole-cell extracts activated in vivo by heat shock and in cytoplasmic extracts activated in vitro by elevated temperature or by urea. The binding of HSF activated in vitro by Nonidet P-40 was not suppressed by the addition of quercetin. The formation of the HSF-HSE complex was not inhibited when quercetin was added only during the binding reaction of HSF to the HSE after in vitro heat activation. Quercetin thus interacts with HSF and inhibits the induction of HSPs after heat shock through inhibition of HSF activation.


1998 ◽  
Vol 95 (16) ◽  
pp. 9129-9133 ◽  
Author(s):  
Rosalind Kim ◽  
Kyeong Kyu Kim ◽  
Hisao Yokota ◽  
Sung-Hou Kim

Small heat shock proteins (sHSPs) belong to a family of 12- to 43-kDa proteins that are ubiquitous and are conserved in amino acid sequence among all organisms. A sHSP homologue of Methanococcus jannaschii, a hyperthermophilic Archaeon, forms a homogeneous multimer comprised of 24 monomers with a molecular mass of 400 kDa in contrast to other sHSPs that show heterogeneous oligomeric complexes. Electron microscopy analysis revealed a spherically shaped oligomeric structure ≈15–20 nm in diameter. The protein confers thermal protection of other proteins in vitro as found in other sHSPs. Escherichia coli cell extracts containing the protein were protected from heat-denatured precipitation when heated up to 100°C, whereas extracts from cells not expressing the protein were heat-sensitive at 60°C. Similar results were obtained when purified sHSP protein was added to an E. coli cell lysate. The protein also prevented the aggregation of two purified proteins: single-chain monellin (SCM) at 80°C and citrate synthase at 40°C.


1989 ◽  
Vol 9 (9) ◽  
pp. 3911-3918 ◽  
Author(s):  
E D von Gromoff ◽  
U Treier ◽  
C F Beck

Genomic clones representing three Chlamydomonas reinhardtii genes homologous to the Drosophila hsp70 heat shock gene were isolated. The mRNAs of genes hsp68, hsp70, and hsp80 could be translated in vitro into proteins of Mr 68,000, 70,000, and 80,000, respectively. Transcription of these genes increased dramatically upon heat shock, and the corresponding mRNAs rapidly accumulated, reaching a peak at around 30 min after a shift to the elevated temperature. Light also induced the accumulation of the mRNAs encoded by these heat shock genes. A shift of dark-grown cells to light resulted in a drastic increase in mRNA levels, which reached a maximum at around 1 h after the shift. Thus, in Chlamydomonas, expression of hsp70-homologous heat shock genes appears to be regulated by thermal stress and light.


1998 ◽  
Vol 334 (2) ◽  
pp. 463-467 ◽  
Author(s):  
Gert C. SCHEPER ◽  
Adri A. M. THOMAS ◽  
van Roel WIJK

Protein synthesis in rat H35 Reuber hepatoma cells is rapidly inhibited on heat shock. At mild heat-shock temperatures the main cause for inhibition is the inactivation of the guanine nucleotide exchange factor eukaryotic initiation factor 2B (eIF2B); under more severe heat-shock conditions the activity of several initiation factors is compromised. eIF2B is required for GDP/GTP exchange on eIF2, which delivers methionyl-tRNA to the 40 S ribosomal subunit. We have tried to elucidate the mechanism underlying the inactivation of eIF2B by assays in vitro. Incubation of cell extracts at 41 °C or higher led to the inactivation of eIF2B. In agreement with observations in cells exposed to mild heat shocks, the thermal inactivation of eIF2B could be ascribed to neither eIF2α phosphorylation nor the induction of another inhibitor. With the use of glycerol gradients we show that eIF2B forms aggregates in heat-treated extracts. Furthermore eIF2B activity is protected against heat shock in thermotolerant cells. Taken together, these results suggest a role for chaperones in the control of eIF2B activity.


2012 ◽  
Vol 11 (7) ◽  
pp. 856-863 ◽  
Author(s):  
Simone Zäuner ◽  
Wibke Jochum ◽  
Tara Bigorowski ◽  
Christoph Benning

ABSTRACT Monogalactosyldiacylglycerol (MGDG) in Chlamydomonas reinhardtii and other green algae contains hexadeca-4,7,10,13-tetraenoic acid (16:4) in the glycerol sn- 2 position. While many genes necessary for the introduction of acyl chain double bonds have been functionally characterized, the Δ4-desaturase remained unknown. Using a phylogenetic comparison, a candidate gene encoding the MGDG-specific Δ4-desaturase from Chlamydomonas (CrΔ4FAD) was identified. CrΔ4FAD shows all characteristic features of a membrane-bound desaturase, including three histidine boxes and a transit peptide for chloroplast targeting. But it also has an N-terminal cytochrome b 5 domain, distinguishing it from other known plastid desaturases. Cytochrome b 5 is the primary electron donor for endoplasmic reticulum (ER) desaturases and is often fused to the desaturase domain in desaturases modifying the carboxyl end of the acyl group. Difference absorbance spectra of the recombinant cytochrome b 5 domain of CrΔ4FAD showed that it is functional in vitro . Green fluorescent protein fusions of CrΔ4FAD localized to the plastid envelope in Chlamydomonas . Interestingly, overproduction of CrΔ4FAD in Chlamydomonas not only increased levels of 16:4 acyl groups in cell extracts but specifically increased the total amount of MGDG. Vice versa, the amount of MGDG was lowered in lines with reduced levels of CrΔ4FAD. These data suggest a link between MGDG molecular species composition and galactolipid abundance in the alga, as well as a specific function for this fatty acid in MGDG.


2009 ◽  
Vol 75 (17) ◽  
pp. 5647-5658 ◽  
Author(s):  
A. J. Roberts ◽  
S. K. Williams ◽  
M. Wiedmann ◽  
K. K. Nightingale

ABSTRACT Listeria monocytogenes can cause a severe invasive food-borne disease known as listeriosis, and large outbreaks of this disease occur occasionally. Based on molecular-subtype data, epidemic clone (EC) strains have been defined, including ECI and ECIa, which have caused listeriosis outbreaks on different continents. While a number of molecular-subtyping studies of outbreak strains have been reported, few comprehensive data sets of virulence-associated characteristics of these strains are available. We assembled a set of human clinical isolates from 15 outbreaks that occurred worldwide between 1975 and 2002. Initial characterization of these strains showed significant variation in the ability to invade human Caco-2 intestinal epithelial cells and HepG2 hepatic cells; four strains showed consistently reduced invasion in both cell lines. DNA sequencing of inlA, which encodes a protein required for efficient Caco-2 and HepG2 invasion, showed that none of the invasion-attenuated strains contained known virulence-attenuating mutations in inlA. Phylogenetic analyses of inlA sequences revealed a well-supported clade containing a fully invasive ECI strain and three invasion-attenuated ECI strains, along with a fully invasive ECIa strain and an invasion-attenuated ECIa strain. Of the four invasion-attenuated strains, one strain showed both reduced inlA transcript levels and impaired swarming, one strain showed reduced inlA transcript levels, and two strains showed reduced swarming. Overall, our data show that (i) L. monocytogenes strains from outbreaks vary significantly in invasion efficiency and (ii) different mechanisms may contribute to reduced invasion efficiency. Association between EC strains and listeriosis outbreaks may involve characteristics other than virulence phenotypes, including survival and growth in food-associated environments.


1991 ◽  
Vol 11 (2) ◽  
pp. 928-934 ◽  
Author(s):  
D J Ebbole ◽  
J L Paluh ◽  
M Plamann ◽  
M S Sachs ◽  
C Yanofsky

CPCI, the principal regulatory protein required for cross-pathway control of amino acid biosynthetic genes in Neurospora crassa, contains a domain similar to the DNA-binding domain of GCN4, the corresponding general regulator in Saccharomyces cerevisiae. We examined binding by CPC1 synthesized in vitro and by CPC1 present in N. crassa whole-cell extracts. CPCI from both sources was shown to bind to the DNA sequence 5'-ATGACTCAT-3', which is also the preferred recognition sequence of GCN4, CPC1 was confirmed as the source of DNA-binding activity in extracts by immunoblotting. Slightly mobility differences between DNA complexes containing CPCI synthesized in vitro and CPC1 in mycelial extracts were observed. Analyses of N. crassa extracts from different stages of asexual development revealed that CPC1 was abundant immediately following spore germination and through early mycelial growth but was scarce subsequently. CPC1 levels could be increased at any time by imposing amino acid starvation. Copies of the CPC1 response element are located upstream of several genes regulated by cross-pathway control, including cpc-1 itself.


2001 ◽  
Vol 58 (4) ◽  
Author(s):  
Kamil Olejnik ◽  
Maria Bucholc ◽  
Anna Anielska-Mazur ◽  
Agata Lipko ◽  
Martyna Kujawa ◽  
...  

Arabidopsis thaliana AtNUDT7 Nudix pyrophosphatase hydrolyzes NADH and ADP-ribose in vitro and is an important factor in the cellular response to diverse biotic and abiotic stresses. Several studies have shown that loss-of-function Atnudt7 mutant plants display many profound phenotypes. However the molecular mechanism of AtNUDT7 function remains elusive. To gain a better understanding of this hydrolase cellular role, proteins interacting with AtNUDT7 were identified. Using AtNUDT7 as a bait in an in vitro binding assay of proteins derived from cultured Arabidopsis cell extracts we identified the regulatory protein RACK1A as an AtNUDT7-interactor. RACK1A-AtNUDT7 interaction was confirmed in a yeast two-hybrid assay and in a pull-down assay and in Bimolecular Fluorescence Complementation (BiFC) analysis of the proteins transiently expressed in Arabidopsis protoplasts. However, no influence of RACK1A on AtNUDT7 hydrolase catalytic activity was observed. In vitro interaction between RACK1A and the AGG1 and AGG2 gamma subunits of the signal transducing heterotrimeric G protein was also detected and confirmed in BiFC assays. Moreover, association between AtNUDT7 and both AGG1 and AGG2 subunits was observed in Arabidopsis protoplasts, although binding of these proteins could not be detected in vitro. Based on the observed interactions we conclude that the AtNUDT7 Nudix hydrolase forms complexes in vitro and in vivo with regulatory proteins involved in signal transduction. Moreover, we provide the initial evidence that both signal transducing gamma subunits bind the regulatory RACK1A protein.


1993 ◽  
Vol 13 (4) ◽  
pp. 2277-2285
Author(s):  
D B Stern ◽  
K L Kindle

Inverted repeat (IR) sequences are found at the 3' ends of most chloroplast protein coding regions, and we have previously shown that the 3'IR is important for accumulation of atpB mRNA in Chlamydomonas reinhardtii (D. B. Stern, E.R. Radwanski, and K. L. Kindle, Plant Cell 3:285-297, 1991). In vitro studies indicate that 3' IRs are inefficient transcription termination signals in higher plants and have furthermore defined processing activities that act on the 3' ends of chloroplast transcripts, suggesting that most chloroplast mRNAs are processed at their 3' ends in vivo. To investigate the mechanism of 3' end processing in Chlamydomonas reinhardtii chloroplasts, the maturation of atpB mRNA was examined in vitro and in vivo. In vitro, a synthetic atpB mRNA precursor is rapidly cleaved at a position 10 nucleotides downstream from the mature 3' terminus. This cleavage is followed by exonucleolytic processing to generate the mature 3' end. In vivo run-on transcription experiments indicate that a maximum of 50% of atpB transcripts are transcriptionally terminated at or near the IR, while the remainder are subject to 3' end processing. Analysis of transcripts derived from chimeric atpB genes introduced into Chlamydomonas chloroplasts by biolistic transformation suggests that in vivo processing and in vitro processing occur by similar or identical mechanisms.


Sign in / Sign up

Export Citation Format

Share Document