scholarly journals Refolding of urea-denatured adenylate kinase

1998 ◽  
Vol 333 (2) ◽  
pp. 401-405 ◽  
Author(s):  
Hong-jie ZHANG ◽  
Xiang-rong SHENG ◽  
Xian-ming PAN ◽  
Jun-mei ZHOU

The refolding of urea-denatured adenylate kinase (EC 2.7.4.3) has been followed by formation of the secondary structure, change of surface hydrophobicity and recovery of catalytic activity. During refolding of adenylate kinase with a 20–80-fold dilution of 4 M urea-denatured enzyme at 10 °C, the formation of the secondary structure is a fast process with a rate constant of > 0.16 s-1. Transient enhancement of the 8-anilino-1-naphthalenesulphonate (ANS) fluorescence intensity is followed by a fluorescence decrease to the level equal to the value characteristic of native enzyme. The desorption of ANS binding fluorescence is relatively slow and can be fitted to a first order reaction with a rate constant of 0.004 s-1 when the ANS is present in the dilution buffer. The desorption of ANS-binding fluorescence is accelerated in the presence of nucleotide substrates. The rate constants are increased to 0.049, 0.029, 0.028 and 0.029 s-1 in the presence of 1 mM AMP, MgATP, ATP and ADP respectively. The refolding rate constant calculated from the initial fluorescence intensity after mixing ANS with protein at different refolding intervals is 0.016 s-1, which is faster than those obtained when ANS is present throughout the refolding process, indicating that the binding of ANS with a partially folded intermediate retards its further refolding to its native structure. The reactivation rate is even faster than the rates of refolding monitored in the absence of substrates, showing that the refolding is accelerated in the presence of the substrates. A possible refolding pathway and the accelerating effect of substrates are discussed.

Author(s):  
Kamlesh Dashora ◽  
Shailendra Saraf ◽  
Swarnalata Saraf

Sustained released tablets of diclofenac sodium (DIC) and tizanidine hydrochloride (TIZ) were prepared by using different proportions of cellulose acetate (CA) as the retardant material. Nine formulations of tablets having different proportion of microparticles developed by varied proportions of polymer: drug ratio ‘’i.e.’’; 1:9 -1:3 for DIC and 1:1 – 3:1 for TIZ. Each tablet contained equivalent to 100 mg of DIC and 6mg of TIZ. The prepared microparticles were white, free flowing and spherical in shape (SEM study), with  the particle size varying from 78.8±1.94 to 103.33±1.28 µm and 175.92± 9.82 to 194.94±14.28µm for DIC  and TIZ, respectively.  The first order rate constant K1 of formulations were found to be in the range of  K1 = 0.117-0.272 and 0.083- 0.189 %hr-1for DIC and TIZ, respectively. The value of exponent coefficient (n) was found to be in the range of 0.6328-0.9412  and 0.8589-1.1954 for DIC and TIZ respectively indicates anomalous  to  non anomalous transport type of diffusions among different formulations


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2005 ◽  
Vol 09 (03) ◽  
pp. 198-205 ◽  
Author(s):  
Fabrizio Monacelli ◽  
Elisa Viola

The oxo-bridged complex ( py ) FePc - O - FePc ( py ) ( py = pyridine , Pc = phthalocyaninato dianion) reacts in dichloromethane with hydrogen sulphide giving elementary sulphur and the reduced ( py )2( FePc ) complex in the stoichiometric ratio 1:1. Under excess py and H2S , the reaction is first-order and the rate constant at a given py concentration is an increasing function of the reducing agent concentration, with asymptotic tendency to a limiting value. This latter depends on the pyridine concentration being higher the lower is the base concentration. When the reaction is carried out in pure pyridine, the rate constant is, instead, a strictly linear function of [ H2S ], with zero intercept. A reaction mechanism is proposed where the dichloromethane is directly involved in the axial coordination about the iron centers and H2S competes efficiently with both pyridine and solvent.


1975 ◽  
Vol 149 (3) ◽  
pp. 627-635 ◽  
Author(s):  
S S Chen ◽  
P C Engel

1. The inactivation of horse liver alcohol dehydrogenase by pyridoxal 5'-phosphate in phosphate buffer, pH8, at 10°C was investigated. Activity declines to a minimum value determined by the pyridoxal 5'-phosphate concentration. The maximum inactivation in a single treatment is 75%. This limit appears to be set by the ratio of the first-order rate constants for interconversion of inactive covalently modified enzyme and a readily dissociable non-covalent enzyme-modifier complex. 2. Reactivation was virtually complete on 150-fold dilution: first-order analysis yielded an estimate of the rate constant (0.164min-1), which was then used in the kinetic analysis of the forward inactivation reaction. This provided estimates for the rate constant for conversion of non-covalent complex into inactive enzyme (0.465 min-1) and the dissociation constant of the non-covalent complex (2.8 mM). From the two first-order constants, the minimum attainable activity in a single cycle of treatment may be calculated as 24.5%, very close to the observed value. 3. Successive cycles of modification followed by reduction with NaBH4 each decreased activity by the same fraction, so that three cycles with 3.6 mM-pyridoxal 5'-phosphate decreased specific activity to about 1% of the original value. The absorption spectrum of the enzyme thus treated indicated incorporation of 2-3 mol of pyridoxal 5'-phosphate per mol of subunit, covalently bonded to lysine residues. 4. NAD+ and NADH protected the enzyme completely against inactivation by pyridoxal 5'-phosphate, but ethanol and acetaldehyde were without effect. 5. Pyridoxal 5'-phosphate used as an inhibitor in steady-state experiments, rather than as an inactivator, was non-competitive with respect to both NADH and acetaldehyde. 6. The partially modified enzyme (74% inactive) showed unaltered apparent Km values for NAD+ and ethanol, indicating that modified enzyme is completely inactive, and that the residual activity is due to enzyme that has not been covalently modified. 7. Activation by methylation with formaldehyde was confirmed, but this treatment does not prevent subsequent inactivation with pyridoxal 5'-phosphate. Presumably different lysine residues are involved. 8. It is likely that the essential lysine residue modified by pyridoxal 5'-phosphate is involved either in binding the coenzymes or in the catalytic step. 9. Less detailed studies of yeast alcohol dehydrogenase suggest that this enzyme also possesses an essential lysine residue.


2006 ◽  
Vol 71 (3) ◽  
pp. 411-422 ◽  
Author(s):  
David Havlíček ◽  
Libor Turek ◽  
Jiří Plocek ◽  
Zdeněk Mička

Solubility in the (Me4N)2SeO4-H2SeO4-H2O and (Me4N)2SeO4-Li2SeO4-H2O systems were studied. The new compounds, tetramethylammonium hydrogenselenate monohydrate ((Me4N)HSeO4·H2O) and lithium tetramethylammonium selenate tetrahydrate (Li(Me4N)SeO4·4H2O), have been found in these systems. Both substances were characterised by chemical analysis and IR molecular spectroscopy. Both of the title substances decompose under the influence of X-radiation and, thus, their structures cannot be determined. The radiolysis of both substances was studied in greater detail. Tetramethylammonium hydrogenselenate monohydrate is dehydrated by X-radiation to form the anhydrous salt. The reaction is controlled by first-order kinetics with a rate constant of 1.30(3) × 10-3 s-1.


1996 ◽  
Vol 50 (11) ◽  
pp. 1352-1359 ◽  
Author(s):  
Ping Chiang ◽  
Kuang-Pang Li ◽  
Tong-Ming Hseu

An idealized model for the kinetics of benzo[ a]pyrene (BaP) metabolism is established. As observed from experimental results, the BaP transfer from microcrystals to the cell membrane is definitely a first-order process. The rate constant of this process is signified as k1. We describe the surface–midplane exchange as reversible and use rate constants k2 and k3 to describe the inward and outward diffusions, respectively. The metabolism is identified as an irreversible reaction with a rate constant k4. If k2 and k3 are assumed to be fast and not rate determining, the effect of the metabolism rate, k4, on the number density of BaP in the midplane of the microsomal membrane, m3, can be estimated. If the metabolism rate is faster than or comparable to the distribution rates, k2 and k3, the BaP concentration in the membrane midplane, m3, will quickly be dissipated. But if k4 is extremely small, m3 will reach a plateau. Under conditions when k2 and k3 also play significant roles in determining the overall rate, more complicated patterns of m3 are expected.


1969 ◽  
Vol 113 (4) ◽  
pp. 611-615 ◽  
Author(s):  
J. Leichter ◽  
M. A. Joslyn

Results are presented on the rate of thiamin cleavage by sulphite in aqueous solutions as affected by temperature (20–70°), pH(2·5–7·0), and variation of the concentration of either thiamin (1–20μm) or sulphite (10–5000μm as sulphur dioxide). Plots of the logarithm of percentage of residual thiamin against time were found to be linear and cleavage thus was first-order with respect to thiamin. At pH5 the rate was also found to be proportional to the sulphite concentration. In the pH region 2·5–7·0 at 25° the rate constant was 50m−1hr.−1 at pH5·5–6·0, and decreased at higher or lower pH values. The rate of reaction increased between 20° and 70°, indicating a heat of activation of 13·6kcal./mole.


1992 ◽  
Vol 45 (12) ◽  
pp. 1943 ◽  
Author(s):  
SJ Dunne ◽  
RC Burns ◽  
GA Lawrance

Oxidation of Ni2+,aq, by S2O82- to nickel(IV) in the presence of molybdate ion, as in the analogous manganese system, involves the formation of the soluble heteropolymolybdate anion [MMogO32]2- (M = Ni, Mn ). The nickel(IV) product crystallized as (NH4)6 [NiMogO32].6H2O from the reaction mixture in the rhombohedra1 space group R3, a 15.922(1), c 12.406(1) � ; the structure was determined by X-ray diffraction methods, and refined to a residual of 0.025 for 1741 independent 'observed' reflections. The kinetics of the oxidation were examined at 80 C over the pH range 3.0-5.2; a linear dependence on [S2O82-] and a non-linear dependence on l/[H+] were observed. The influence of variation of the Ni/Mo ratio between 1:10 and 1:25 on the observed rate constant was very small at pH 4.5, a result supporting the view that the precursor exists as the known [NiMo6O24H6]4- or a close analogue in solution. The pH dependence of the observed rate constant at a fixed oxidant concentration (0.025 mol dm-3) fits dequately to the expression kobs = kH [H+]/(Ka+[H+]) where kH = 0.0013 dm3 mol-1 s-1 and Ka = 4-0x10-5. The first-order dependence on peroxodisulfate subsequently yields a second-order rate constant of 0.042 dm3 mol-1 s-1. Under analogous conditions, oxidation of manganese(II) occurs eightfold more slowly than oxidation of nickel(II), whereas oxidation of manganese(II) by peroxomonosulfuric acid is 16-fold faster than oxidation by peroxodisulfate under similar conditions.


2010 ◽  
Vol 2 (2) ◽  
pp. 107-112
Author(s):  
Nuryono Nuryono ◽  
Narsito Narsito

In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl) and sulfuric acid (H2SO4) on kinetics of Cd(II) adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size) with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II) in aqueous solution with various concentrations. The Cd(II) adsorbed was determined by analyzing the rest of Cd(II) in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II) occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I) followed by reaction of reversible first order (step II). Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated) did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol).     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.


1963 ◽  
Vol 41 (7) ◽  
pp. 1826-1831 ◽  
Author(s):  
F. W. Evans ◽  
A. H. Sehon

The thermal decomposition of peracetic acid in toluene, benzene, and p-xylene was studied over the temperature range 75–95°C. The main products of decomposition were found to be CH4, CO2, CH3COOH; small amounts of methanol, phenols, and polymeric compounds were also detected.The rate of the overall decomposition was first order with respect to peracetic acid, and the results could be explained by postulating the participation of the two simultaneous reactions:[Formula: see text] [Formula: see text]The rate constant of reaction (1) was independent of the solvent, whereas k2 was dependent on the solvent. The ratio k2/k1 was about 10.


Sign in / Sign up

Export Citation Format

Share Document