FM1-43 reports plasma membrane phospholipid scrambling in T-lymphocytes

2000 ◽  
Vol 349 (1) ◽  
pp. 255-260 ◽  
Author(s):  
Adam ZWEIFACH

We have found using imaging techniques that stimulating Jurkat human leukaemic T-cells with ionomycin in the presence of FM1-43, a dye used to monitor exocytosis and endocytosis, causes large (6-10-fold) increases in FM1-43 fluorescence. These responses are too large to be caused by exocytosis. Instead, three lines of evidence suggest that FM1-43 is responding to phospholipid scrambling. First, ionomycin also stimulates increases in the fluorescence of annexin V, a phosphatidylserine-specific probe, while thapsigargin does not stimulate fluorescence increases of either probe. Secondly, cells that exhibit FM1-43 fluorescence increases after ionomycin stimulation stain with annexin V once FM1-43 is washed out. Thirdly, ionomycin stimulates uptake of 7-nitrobenz-2-oxa-1,3-diazole-labelled phosphatidylcholine, a specific assay for scramblase activity, whereas thapsigargin does not. We find that FM1-43 reports phospholipid scrambling with ‘better’ kinetics than annexin V, and does require extracellular Ca2+ to report phospholipid scrambling. We suggest that FM1-43 may be a useful probe to study the dynamics of phospholipid scrambling. The results are the first demonstration that FM1-43 can respond significantly to a biological process other than vesicular trafficking.

2004 ◽  
Vol 324 (3) ◽  
pp. 1059-1064 ◽  
Author(s):  
Yulia Y. Tyurina ◽  
Vladimir A. Tyurin ◽  
Qing Zhao ◽  
Mirjana Djukic ◽  
Peter J. Quinn ◽  
...  

1995 ◽  
Vol 182 (5) ◽  
pp. 1545-1556 ◽  
Author(s):  
S J Martin ◽  
C P Reutelingsperger ◽  
A J McGahon ◽  
J A Rader ◽  
R C van Schie ◽  
...  

A critical event during programmed cell death (PCD) appears to be the acquisition of plasma membrane (PM) changes that allows phagocytes to recognize and engulf these cells before they rupture. The majority of PCD seen in higher organisms exhibits strikingly similar morphological features, and this form of PCD has been termed apoptosis. The nature of the PM changes that occur on apoptotic cells remains poorly defined. In this study, we have used a phosphatidylserine (PS)-binding protein (annexin V) as a specific probe to detect redistribution of this phospholipid, which is normally confined to the inner PM leaflet, during apoptosis. Here we show that PS externalization is an early and widespread event during apoptosis of a variety of murine and human cell types, regardless of the initiating stimulus, and precedes several other events normally associated with this mode of cell death. We also report that, under conditions in which the morphological features of apoptosis were prevented (macromolecular synthesis inhibition, overexpression of Bcl-2 or Abl), the appearance of PS on the external leaflet of the PM was similarly prevented. These data are compatible with the notion that activation of an inside-outside PS translocase is an early and widespread event during apoptosis.


1994 ◽  
Vol 103 (3) ◽  
pp. 365-388 ◽  
Author(s):  
R E Dolmetsch ◽  
R S Lewis

Stimulation through the antigen receptor (TCR) of T lymphocytes triggers cytosolic calcium ([Ca2+]i) oscillations that are critically dependent on Ca2+ entry across the plasma membrane. We have investigated the roles of Ca2+ influx and depletion of intracellular Ca2+ stores in the oscillation mechanism, using single-cell Ca2+ imaging techniques and agents that deplete the stores. Thapsigargin (TG; 5-25 nM), cyclopiazonic acid (CPA; 5-20 microM), and tert-butylhydroquinone (tBHQ; 80-200 microM), inhibitors of endoplasmic reticulum Ca(2+)-ATPases, as well as the Ca2+ ionophore ionomycin (5-40 nM), elicit [Ca2+]i oscillations in human T cells. The oscillation frequency is approximately 5 mHz (for ATPase inhibitors) to approximately 10 mHz (for ionomycin) at 22-24 degrees C. The [Ca2+]i oscillations resemble those evoked by TCR ligation in terms of their shape, amplitude, and an absolute dependence on Ca2+ influx. Ca(2+)-ATPase inhibitors and ionomycin induce oscillations only within a narrow range of drug concentrations that are expected to cause partial depletion of intracellular stores. Ca(2+)-induced Ca2+ release does not appear to be significantly involved, as rapid removal of extracellular Ca2+ elicits the same rate of [Ca2+]i decline during the rising and falling phases of the oscillation cycle. Both transmembrane Ca2+ influx and the content of ionomycin-releasable Ca2+ pools fluctuate in oscillating cells. From these data, we propose a model in which [Ca2+]i oscillations in T cells result from the interaction between intracellular Ca2+ stores and depletion-activated Ca2+ channels in the plasma membrane.


2007 ◽  
Vol 81 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Clare Jolly ◽  
Ivonne Mitar ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells leads to the production of new virions that assemble at the plasma membrane. Gag and Env accumulate in the context of lipid rafts at the inner and outer leaflets of the plasma membrane, respectively, forming polarized domains from which HIV-1 buds. HIV-1 budding can result in either release of cell-free virions or direct cell-cell spread via a virological synapse (VS). The recruitment of Gag and Env to these plasma membrane caps in T cells is poorly understood but may require elements of the T-cell secretory apparatus coordinated by the cytoskeleton. Using fixed-cell immunofluorescence labeling and confocal microscopy, we observed a high percentage of HIV-1-infected T cells with polarized Env and Gag in capped, lipid raft-like assembly domains. Treatment of infected T cells with inhibitors of actin or tubulin remodeling disrupted Gag and Env compartmentalization within the polarized raft-like domains. Depolymerization of the actin cytoskeleton reduced Gag release and viral infectivity, and actin and tubulin inhibitors reduced Env incorporation into virions. Live- and fixed-cell confocal imaging and assay of de novo DNA synthesis by real-time PCR allowed quantification of HIV-1 cell-cell transfer. Inhibition of actin and tubulin remodeling in infected cells interfered with cell-cell spread across a VS and reduced new viral DNA synthesis. Based on these data, we propose that HIV-1 requires both actin and tubulin components of the T-cell cytoskeleton to direct its assembly and budding and to elaborate a functional VS.


Author(s):  
jia liu ◽  
Xuecheng Yang ◽  
Hua Wang ◽  
Ziwei Li ◽  
Hui Deng ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects millions of people and killed hundred-thousands of individuals. While acute and intermediate interactions between SARS-CoV-2 and the immune system have been studied extensively, long-term impacts on the cellular immune system remained to be analyzed. Here, we comprehensively characterized immunological changes in peripheral blood mononuclear cells in 49 COVID-19 convalescent individuals (CI) in comparison to 27 matched SARS-CoV-2 unexposed individuals (UI). Despite recovery from the disease for more than 2 months, CI showed significant decreases in frequencies of invariant NKT and NKT-like cells compared to UI. Concomitant with the decrease in NKT-like cells, an increase in the percentage of Annexin V and 7-AAD double positive NKT-like cells was detected, suggesting that the reduction in NKT-like cells results from cell death months after recovery. Significant increases in regulatory T cell frequencies, TIM-3 expression on CD4 and CD8 T cells, as well as PD-L1 expression on B cells were also observed in CI, while the cytotoxic potential of T cells and NKT-like cells, defined by GzmB expression, was significantly diminished. However, both CD4 and CD8 T cells of CI showed increased Ki67 expression and were fully capable to proliferate and produce effector cytokines upon TCR stimulation. Collectively, we provide the first comprehensive characterization of immune signatures in patients recovering from SARS-CoV-2 infection, suggesting that the cellular immune system of COVID-19 patients is still under a sustained influence even months after the recovery from disease.


2003 ◽  
Vol 278 (22) ◽  
pp. 20389-20394 ◽  
Author(s):  
Lorian C. Hartgroves ◽  
Joseph Lin ◽  
Hanno Langen ◽  
Tobias Zech ◽  
Arthur Weiss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document