scholarly journals Tryptophan metabolism, disposition and utilization in pregnancy

2015 ◽  
Vol 35 (5) ◽  
Author(s):  
Abdulla A.-B. Badawy

The essential amino acid tryptophan (Trp) is especially important in pregnancy for protein synthesis by mother and fetus, fetal growth and development and prevention of fetal rejection by immunosuppression. A Trp utilization concept based on these physiological requirements in pregnancy is proposed.

Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


2012 ◽  
Vol 5 ◽  
pp. IJTR.S9835 ◽  
Author(s):  
Diba Sheipouri ◽  
Nady Braidy ◽  
Gilles J. Guillemin

The kynurenine pathway (KP) is the principle route of catabolism of the essential amino acid tryptophan, leading to the production of several neuroactive and immunoregulatory metabolites. Alterations in the KP have been implicated in various neuropsychiatric and neurodegenerative diseases, immunological disorders, and many other diseased states. Although the role of the KP in the skin has been evaluated in small niche fields, limited studies are available regarding the effect of acute ultra violet exposure and the induction of the KP in human skin-derived fibroblasts and keratinocytes. Since UV exposure can illicit an inflammatory component in skin cells, it is highly likely that the KP may be induced in these cells in response to UV exposure. It is also possible that some KP metabolites may act as pro-inflammatory and anti-inflammatory mediators, since the KP is important in immunomodulation.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0220757
Author(s):  
Bijal Patel ◽  
Martina Pauk ◽  
Miryam Amigo-Benavent ◽  
Alice B. Nongonierma ◽  
Richard J. Fitzgerald ◽  
...  

2006 ◽  
Vol 38 (Supplement) ◽  
pp. S112
Author(s):  
Satoshi Fujita ◽  
Hans C. Dreyer ◽  
Jerson G. Cadenas ◽  
Jessica Lee ◽  
Erin L. Glynn ◽  
...  

2000 ◽  
Vol 279 (5) ◽  
pp. E978-E988 ◽  
Author(s):  
Paul G. Whittaker ◽  
Choy H. Lee ◽  
Roy Taylor

The effects of pregnancy and type 1 diabetes [insulin-dependent diabetes mellitus (IDDM)] on protein metabolism are still uncertain. Therefore, six normal and five IDDM women were studied during and after pregnancy, using [13C]leucine and [2H5]phenylalanine with a hyperinsulinemic-euglycemic clamp and amino acid infusion. Fasting total plasma amino acids were lower in pregnancy in normal but not IDDM women (2,631 ± 427 vs. 2,057 ± 471 and 2,523 ± 430 vs. 2,500 ± 440 μmol/l, respectively). Whole body protein breakdown (leucine) increased in pregnancy [change in normal (ΔN) and IDDM women (ΔD) 0.59 ± 0.40 and 0.48 ± 0.26 g · kg−1 · day−1, both P < 0.001], whereas reductions in protein breakdown due to insulin/amino acids (ΔN −0.57 ± 0.19, ΔD −0.58 ± 0.20 g · kg−1 · day−1, both P < 0.001) were unaffected by pregnancy. Protein breakdown in IDDM women was not higher than normal, and neither pregnancy nor type 1 diabetes altered the insulin sensitivity of amino acid turnover. Nonoxidized leucine disposal (protein synthesis) increased in pregnancy (ΔN 0.67 ± 0.45, ΔD 0.64 ± 0.34 g · kg−1 · day−1, both P < 0.001). Pregnancy reduced the response of phenylalanine hydroxylation to insulin/amino acids in both groups (ΔN −1.14 ± 0.74, ΔD −1.12 ± 0.77 g · kg−1 · day−1, both P < 0.05). These alterations may enable amino acid conservation for protein synthesis and accretion in late pregnancy. Well-controlled type 1 diabetes caused no abnormalities in the regulation of basal or stimulated protein metabolism.


2002 ◽  
Vol 282 (1) ◽  
pp. C153-C160 ◽  
Author(s):  
Stuart Cramer ◽  
Mark Beveridge ◽  
Michael Kilberg ◽  
Donald Novak

Fetal growth and development are dependent on the delivery of amino acids from maternal amino acid pools to the fetal blood. This is accomplished via transfer across the apical and basal plasma membrane of the placental syncytiotrophoblast. The aim of this study was to determine whether inhibition of system A (amino acid transporter) was associated with a decrease in fetal weight in the rat. System A is a ubiquitous Na+-dependent amino acid transporter that actively transports small zwitterionic amino acids. In brief, system A was inhibited by infusing a nonmetabolizable synthetic amino acid analog, 2-(methylamino)isobutyric acid from days 7–20 of gestation. On day 20, the rats were killed and tissues (maternal liver, fetuses, and placentas) were collected for analysis. The degree of system A inhibition was determined, as was the impact of said inhibition on fetal and maternal weights, system A-mediated placental transport, and placental system A-mediated transporter expression. Our results suggest that when system A is inhibited, fetal weight is diminished [control group: −3.55 ± 0.04 g ( n = 113), experimental group: −3.29 ± 0.04 g ( n = 128)], implying an integral role for system A transport in fetal growth and development in the rat.


Sign in / Sign up

Export Citation Format

Share Document