scholarly journals Effect of drug-loaded microbubbles combined with ultrasound on the apoptosis of cancer cells and the expression of Bax and Bcl-2 in a rabbit VX2 liver tumor model

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Kun Chen ◽  
Liang Zhang

Abstract The aim of the present study was to investigate whether the use of drug-loaded microbubbles combined with ultrasound promotes the apoptosis of cancer cells by regulating B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax) expression. Adriamycin-loaded PLGA nanoparticles (ADM-NP) were fabricated using a modified emulsification process. Lipid microbubbles (NH2-MB) were prepared by mechanical vibration. The carboxyl groups of ADM-NP and NH2-MB underwent a condensation reaction after 48 h, and adriamycin-loaded PLGA nanoparticles microbubble complexes (ADM-NMC) were obtained. High-performance liquid chromatography demonstrated that the entrapment efficiency and drug loading of ADM-NMC were 85.32 ± 5.41% and 7.91 ± 0.27%, respectively. The VX2 liver cancer model was established in 30 New Zealand rabbits, which were subsequently divided into three groups (n=10): a control group that received 5 ml of saline, an ADM-NP group that received 5 ml of ADM-NP and an ADM-NMC group that received 5 ml of ADM-NMC. Rabbits in the ADM-NP and ADM-NMC groups underwent irradiation 120 s with low frequency ultrasound (1 MHz, 0.5 W/cm2) for 120 s following injection. The echogenicity of tumors markedly increased following ADM-NP and ADM-NMC treatment. Staining with hematoxylin and eosin demonstrated that the tumor shape became more normal in the ADM-NP and ADM-NMC groups compared with the control group. Immunohistochemical staining and Western blotting determined that the expression of Bax increased and the expression of Bcl-2 decreased following treatment with ADM-NP and ADM-NMC. Cancer cell apoptosis was detected by flow cytometry and it was determined that apoptosis significantly increased following treatment with ADM-NP and ADM-NMC (P<0.01). Therefore, the present study demonstrated that the use of drug-loaded microbubbles combined with ultrasound may enhance the efficiency of tumor inhibition. This may be due to the promotion of cancer cell apoptosis via regulation of Bax and Bcl-2 expression.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yu Wang ◽  
Liming Zhu ◽  
Mei Guo ◽  
Gang Sun ◽  
Kun Zhou ◽  
...  

AbstractWHSC1 is a histone methyltransferase that facilitates histone H3 lysine 36 dimethylation (H3K36me2), which is a permissive mark associated with active transcription. In this study, we revealed how WHSC1 regulates tumorigenesis and chemosensitivity of colorectal cancer (CRC). Our data showed that WHSC1 as well as H3K36me2 were highly expressed in clinical CRC samples, and high WHSC1 expression is associated with poorer prognosis in CRC patients. WHSC1 reduction promoted colon cancer cell apoptosis both in vivo and in vitro. We found that B cell lymphoma-2 (BCL2) expression, an anti-apoptotic protein, is markedly decreased in after WHSC1 depletion. Mechanistic characterization indicated that WHSC1 directly binds to the promoter region of BCL2 gene and regulate its H3K36 dimethylation level. What’s more, our study indicated that WHSC1 depletion promotes chemosensitivity in CRC cells. Together, our results suggested that WHSC1 and H3K36me2 modification might be optimal therapeutic targets to disrupt CRC progression and WHSC1-targeted therapy might potentially overcome the resistance of chemotherapeutic agents.


2020 ◽  
Vol 11 (12) ◽  
pp. 3215-3222
Author(s):  
Xinming Li ◽  
Yanan Hou ◽  
Jintao Zhao ◽  
Jin Li ◽  
Song Wang ◽  
...  

The 1,2-diselenolane unit is a general scaffold to construct glutathione-dependent prodrugs that show increased potency to cancer cells, and work via a combination of chemotherapy and oxidative stress.


MedChemComm ◽  
2016 ◽  
Vol 7 (5) ◽  
pp. 806-812 ◽  
Author(s):  
Hai-Rong Zhang ◽  
Ke-Bin Huang ◽  
Zhen-Feng Chen ◽  
Yan-Cheng Liu ◽  
You-Nian Liu ◽  
...  

Three cobalt(ii) complexes with 8-hydroxyquinoline derivatives as ligands were synthesized. They exhibited strong proliferation inhibition activity against T-24 cancer cells, which induced cancer cell apoptosis via intrinsic caspase-mitochondria pathways.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaoping Song ◽  
Xiangting Xu ◽  
Jiali Lu ◽  
Xiaoyuan Chi ◽  
Yue Pang ◽  
...  

Lamprey immune protein (LIP), a novel protein derived from the Lampetra japonica, has been shown to exert efficient tumoricidal actions without concomitant damage to healthy cells. Our study aimed to ascertain the mechanisms by which LIP inhibits lung cancer cells, thus delineating potential innovative therapeutic strategies. LIP expression in lung cancer cells was evaluated by western blotting and immunohistochemistry. Functional assays, such as high-content imaging, 3D-structured illumination microscopy (3D-SIM) imaging, flow cytometry, and confocal laser scanning microscopy, were performed to examine the proliferation and lung cancer cell apoptosis. Tumor xenograft assays were performed using an in vivo imaging system. We observed that LIP induces the decomposition of certain lung cancer cell membranes by destroying organelles such as the microtubules, mitochondria, and endoplasmic reticulum (ER), in addition to causing leakage of cytoplasm, making the maintenance of homeostasis difficult. We also demonstrated that LIP activates the ER stress pathway, which mediates lung cancer cell apoptosis by producing reactive oxygen species (ROS). In addition, injection of LIP significantly retarded the tumor growth rate in nude mice. Taken together, these data revealed a role of LIP in the regulation of lung cancer cell apoptosis via control of the ER stress signaling pathway, thus revealing its possible application in lung cancer treatment.


2019 ◽  
Vol 156 (6) ◽  
pp. S-484
Author(s):  
Hiroaki Konishi ◽  
Mikihiro Fujiya ◽  
Akemi Kita ◽  
Hiroki Tanaka ◽  
Shin Kashima ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jianxiao Zheng ◽  
Gong Li ◽  
Juanjuan Wang ◽  
Shujing Wang ◽  
Qing Tang ◽  
...  

Background: Radiation-induced skin injury is a major side-effect observed in cancer patients who received radiotherapy. Thus identifying new radioprotective drugs for prevention or treatment of post-irradiation skin injury should be prompted. A large number of clinical studies have confirmed that Compound Kushen injection (CKI) can enhance efficacy and reduce toxicity of radiotherapy. The aim of this study is to confirm the effect of CKI in alleviating radiotherapy injury in the skin and explore the exact mechanism.Methods: 60 patients who met the inclusion/exclusion criteria were allocated to treatment group (CKI before radiotherapy) or control group (normal saline before radiotherapy) randomly. MTT assay, flow cytometry, Western Blot, and transient transfection were performed to detect the cell viability, cell apoptosis and Bim expression after treatment with CKI or/and radiotherapy.Results: CKI had the effect of alleviating skin injury in cancer patients who received radiotherapy in clinic. CKI induced cancer cell apoptosis when combined with irradiation (IR), while it reversed the induction of cell apoptosis by IR in human skin fibroblast (HSF) cells. And Bim, as a tumor suppressor, was induced in cancer cells but had no change in HSF cells when treated with CKI. Moreover, the above effect could be attenuated when Bim was silenced by siRNA.Conclusion: We conclude that CKI represents a promising radio-protective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) and HSF cells (providing radio-protection via inhibiting IR-induced apoptosis), via regulating Bim. Our study uncovers a novel mechanism by which CKI inhibits human cancer cell while protects skin from radiotherapy, indicating CKI might be a promising radio-protective drug.Clinical Trial Registration: Chinese Clinical Trial Registry (www.chictr.org.cn), identifier ChiCTR2100049164.


Metallomics ◽  
2014 ◽  
Vol 6 (11) ◽  
pp. 2025-2033 ◽  
Author(s):  
N. Duraipandy ◽  
Rachita Lakra ◽  
Srivatsan Kunnavakkam Vinjimur ◽  
Debasis Samanta ◽  
Purna Sai K ◽  
...  

Nano-caging of plumbagin for selective killing of cancer cells.


2021 ◽  
Vol 3 ◽  
Author(s):  
Fatemeh Movahedi ◽  
Wenyi Gu ◽  
Christiane Pienna Soares ◽  
Zhi Ping Xu

Benzimidazole (BMZ) family of anti-worm drugs has been now repurposed as anti-cancer drugs. However, offering a general reformulation method for these drugs is essential due to their hydrophobicity and low aqueous solubility. In this work, we developed a general approach to load typical BMZ drugs as tiny nanocrystals within lipid-coated calcium phosphate (LCP) nanoparticles. BMZ drug-loaded LCP nanoparticles increased their solubility in PBS by 100–200% and significantly enhanced the anti-cancer efficacy in the treatment of B16F0 melanoma cells. These drug-LCP nanoparticles induced much more cancer cell apoptosis, generated much more reactive oxygen species (ROS) and inhibited Bcl-2 expression of cancer cells. Moreover, BMZ drug-loaded LCP nanoparticles caused morphological change and extension disruption of cancer cells, and significantly reduced migration activity, representing high possibility for inhibition of tumor dissemination and metastasis. Very advantageously, BMZ drug-loaded LCP nanoparticles did not show any obvious toxicity, Bcl-2 inhibition and morphological changes in HEK293T healthy cells. In conclusion, BMZ drug-incorporated LCP nanoformulations may be a valuable nanomedicine that is able to inhibit primary tumors and prevent tumor dissemination with minimum side effects on healthy cells and tissues.


Sign in / Sign up

Export Citation Format

Share Document