scholarly journals Melatonin attenuates acute kidney ischemia/reperfusion injury in diabetic rats by activation of the SIRT1/Nrf2/HO-1 signaling pathway

2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Si Shi ◽  
Shaoqing Lei ◽  
Chaoliang Tang ◽  
Kai Wang ◽  
Zhongyuan Xia

AbstractBackground and aims: Diabetic kidney is more sensitive to ischemia/reperfusion (I/R) injury, which is associated with increased oxidative stress and impaired nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Melatonin, a hormone that is secreted with the rhythm of the light/dark cycle, has antioxidative effects in reducing acute kidney injury (AKI). However, the molecular mechanism of melatonin protection against kidney I/R injury in the state of diabetes is still unknown. In the present study, we hypothesized that melatonin attenuates renal I/R injury in diabetes by activating silent information regulator 2 associated protein 1 (SIRT1) expression and Nrf2/HO-1 signaling. Methods: Control or streptozotocin (STZ)-induced Type 1 diabetic rats were treated with or without melatonin for 4 weeks. Renal I/R injury was achieved by clamping both left and right renal pedicles for 30 min followed by reperfusion for 48 h. Results: Diabetic rats that were treated with melatonin undergoing I/R injury prevented renal injury from I/R, in aspects of the histopathological score, cell apoptosis, and oxidative stress in kidney, accompanied with decreased expressions of SIRT1, Nrf2, and HO-1 as compared with those in control rats. All these alterations were attenuated or prevented by melatonin treatment; but these beneficial effects of melatonin were abolished by selective inhibition of SIRT1 with EX527. Conclusion: These findings suggest melatonin could attenuate renal I/R injury in diabetes, possibly through improving SIRT1/Nrf2/HO-1 signaling.

2020 ◽  
Vol 319 (5) ◽  
pp. E904-E911 ◽  
Author(s):  
Shuangyan Yang ◽  
Ruixue Zhang ◽  
Baoheng Xing ◽  
Ling Zhou ◽  
Peipei Zhang ◽  
...  

Preeclampsia (PE) can cause serious health problems for pregnant women and their infants. Astragaloside IV has been shown to exert cardioprotective, anti-inflammatory, and antioxidative effects on various disorders. We aimed to study the effects of Astragaloside IV on PE symptoms using an NG-nitro-l-arginine methyl ester (l-NAME)-induced rat model of PE. The pregnant rats’ physiological features, including blood pressure, urine protein, serum soluble fms-like tyrosine kinase- 1 ( sFlt - 1)/placental growth factor (PlGF) ratio, and weight of placenta, as well as the weight, length, and survival of pups, were documented. The expression levels of target genes were analyzed by Western blot and qRT-PCR assays. The levels of target secreted proteins were determined by ELISA. We demonstrated that the administration of Astragaloside IV might exert a multitude of beneficial effects on attenuated PE symptoms in a rat model of PE. We further revealed that the effects of Astragaloside IV on PE rats were achieved, at least partially, through elimination of oxidative stress and stimulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. Our study indicated that Astragaloside IV may serve as a promising candidate for the development of new therapeutic methods for patients with PE.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renhe Wang ◽  
Haijun Zhao ◽  
Yingyu Zhang ◽  
Hai Zhu ◽  
Qiuju Su ◽  
...  

Renal ischemia–reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and has no effective treatment. Exploring the molecular mechanisms of renal IRI is critical for the prevention of AKI and its evolution to chronic kidney disease and end-stage renal disease. The aim of the present study was to determine the biological function and molecular mechanism of action of miR-92a-3p in tubular epithelial cell (TEC) pyroptosis. We investigated the relationship between nuclear factor-erythroid 2-related factor 1 (Nrf1) and TEC pyroptosis induced by ischemia–reperfusion in vivo and oxygen–glucose deprivation/reoxygenation (OGD/R) in vitro. MicroRNAs (miRNAs) are regulators of gene expression and play a role in the progression of renal IRI. Nrf1 was confirmed as a potential target for miRNA miR-92a-3p. In addition, the inhibition of miR-92a-3p alleviated oxidative stress in vitro and decreased the expression levels of NLRP3, caspase-1, GSDMD-N, IL-1β, and IL-18 in vitro and in vivo. Moreover, Zn-protoporphyrin-IX, an inhibitor of heme oxygenase-1, reduced the protective effect of Nrf1 overexpression on OGD/R-induced TEC oxidative stress and pyroptosis. The results of this study suggest that the inhibition of miR-92a-3p can alleviate TEC oxidative stress and pyroptosis by targeting Nrf1 in renal IRI.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Chi Xiao ◽  
Man-Li Xia ◽  
Jue Wang ◽  
Xin-Ru Zhou ◽  
Yang-Yun Lou ◽  
...  

Luteolin has been reported to attenuate ischemia/reperfusion (I/R) injury in the diabetic heart through endothelial nitric oxide synthase- (eNOS-) related antioxidative response. Though the nuclear factor erythroid 2-related factor 2 (Nrf2) is regarded as a key endogenous factor to reduce diabetic oxidative stress, whether luteolin reduces cardiac I/R injury in the diabetic heart via enhancing Nrf2 function needs to be clarified. We hypothesized that pretreatment with luteolin could alleviate cardiac I/R injury in the diabetic heart by affecting the eNOS/Nrf2 signaling pathway. The diabetic rat was produced by a single injection of streptozotocin (65 mg/kg, i.p.) for 6 weeks, and then, luteolin (100 mg/kg/day, i.g.), eNOS inhibitor L-NAME, or Nrf2 inhibitor brusatol was administered for the succedent 2 weeks. After that, the isolated rat heart was exposed to 30 min of global ischemia and 120 min of reperfusion to establish I/R injury. Luteolin markedly ameliorated cardiac function and myocardial viability; upregulated expressions of heme oxygenase-1, superoxide dismutase, glutathione peroxidase, and catalase; and reduced myocardial lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R heart. All these ameliorating effects of luteolin were significantly reversed by L-NAME or brusatol. Luteolin also markedly reduced S-nitrosylation of Kelch-like ECH-associated protein 1 (Keap1) and upregulated Nrf2 and its transcriptional activity. This effect of luteolin on Keap1/Nrf2 signaling was attenuated by L-NAME. These data reveal that luteolin protects the diabetic heart against I/R injury by enhancing eNOS-mediated S-nitrosylation of Keap1, with subsequent upregulation of Nrf2 and the Nrf2-related antioxidative signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
pp. 537-543
Author(s):  
Mei Zhang ◽  
Jing Yuan ◽  
Rong Dong ◽  
Jingjing Da ◽  
Qian Li ◽  
...  

Abstract Background Hyperhomocysteinemia (HHcy) plays an important role in the progression of many kidney diseases; however, the relationship between HHcy and ischemia-reperfusion injury (IRI)-induced acute kidney injury (IRI-induced AKI) is far from clear. In this study, we try to investigate the effect and possible mechanisms of HHcy on IRI-induced AKI. Methods Twenty C57/BL6 mice were reared with a regular diet or high methionine diet for 2 weeks (to generate HHcy mice); after that, mice were subgrouped to receive sham operation or ischemia-reperfusion surgery. Twenty four hour after reperfusion, serum creatinine, blood urea nitrogen, and Malondialdehyde (MDA) were measured. H&E staining for tubular injury, western blot for γH2AX, JNK, p-JNK, and cleaved caspase 3, and TUNEL assay for tubular cell apoptosis were also performed. Results Our results showed that HHcy did not influence the renal function and histological structure, as well as the levels of MDA, γH2AX, JNK, p-JNK, and tubular cell apoptosis in control mice. However, in IRI-induced AKI mice, HHcy caused severer renal dysfunction and tubular injury, higher levels of oxidative stress, DNA damage, JNK pathway activation, and tubular cell apoptosis. Conclusion Our results demonstrated that HHcy could exacerbate IRI-induced AKI, which may be achieved through promoting oxidative stress, DNA damage, JNK pathway activation, and consequent apoptosis.


2020 ◽  
Author(s):  
Caitriona M. McEvoy ◽  
Sergi Clotet-Freixas ◽  
Tomas Tokar ◽  
Chiara Pastrello ◽  
Shelby Reid ◽  
...  

AbstractNormothermic ex-vivo kidney perfusion (NEVKP) results in significantly improved graft function in porcine auto-transplant models of DCD injury compared to static cold storage (SCS); however, the molecular mechanisms underlying these beneficial effects remain unclear. We performed an unbiased proteomics analysis of 28 kidney biopsies obtained at 3 time points from pig kidneys subjected to 30-minutes of warm ischemia, followed by 8 hours of NEVKP or SCS, and auto-transplantation. 70/6593 proteins quantified were differentially expressed between NEVKP and SCS groups (FDR<0.05). Proteins increased in NEVKP mediated key metabolic processes including fatty acid ß-oxidation, the TCA-cycle and oxidative phosphorylation. Comparison of our findings with external datasets of ischemia-reperfusion, and other models of kidney injury confirmed that 47 of our proteins represent a common signature of kidney injury reversed or attenuated by NEVKP. We validated key metabolic proteins (ETFB, CPT2) by immunoblotting. Transcription factor databases identified PPARGC1A, PPARA/G/D and RXRA/B as the upstream regulators of our dataset, and we confirmed their increased expression in NEVKP with RT-PCR. The proteome-level changes observed in NEVKP mediate critical metabolic pathways that may explain the improved graft function observed. These effects may be coordinated by PPAR-family transcription factors, and may represent novel therapeutic targets in ischemia-reperfusion injury.


2015 ◽  
Vol 3 (3) ◽  
pp. 116-125 ◽  
Author(s):  
Bulent Ergin ◽  
Coert J. Zuurbier ◽  
Rick Bezemer ◽  
Asli Kandil ◽  
Emre Almac ◽  
...  

AbstractBackground and objectives: Acute kidney injury (AKI) is a clinical condition associated with a degree of morbidity and mortality despite supportive care, and ischemia/reperfusion injury (I/R) is one of the main causes of AKI. The pathophysiology of I/R injury is a complex cascade of events including the release of free oxygen radicals followed by damage to proteins, lipids, mitochondria, and deranged tissue oxygenation. In this study, we investigated whether the antioxidant ascorbic acid would be able to largely prevent oxidative stress and consequently, reduce I/R-related injury to the kidneys in terms of oxygenation, inflammation, and renal failure. Materials and methods: Rats were divided into three groups (n = 6/group): (1) a time control group; (2) a group subjected to renal ischemia for 60 min by high aortic occlusion followed by 2 h of reperfusion (I/R); and (3) a group subjected to I/R and treated with an i.v. 100 mg/kg bolus ascorbic acid 15 min before ischemia and continuous infusion of 50 mg/kg/hour for 2 h during reperfusion (I/R + AA). We measured renal tissue oxidative stress, microvascular oxygenation, renal oxygen delivery and consumption, and renal expression of inflammatory and injury markers. Results: We demonstrated that aortic clamping and release resulted in increased oxidative stress and inflammation that was associated with a significant fall in systemic and renal hemodynamics and oxygenation parameters. The treatment of ascorbic acid completely abrogated oxidative stress and inflammatory parameters. However, it only partly improved microcirculatory oxygenation and was without any effect on anuria. Conclusion: The ascorbic acid treatment partly improves microcirculatory oxygenation and prevents oxidative stress without restoring urine output in a severe I/R model of AKI.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Ruifeng Shi ◽  
Kunxiong Yuan ◽  
Bin Hu ◽  
Hongfei Sang ◽  
Lizhi Zhou ◽  
...  

Diabetes mellitus (DM) substantially increases the risk of ischemic stroke and reduces the tolerance to ischemic insults. Tissue kallikrein (TK) has been demonstrated to protect neurons from ischemia/reperfusion (I/R) injury in orthoglycemic model by activating the bradykinin B2 receptor (B2R). Considering the differential effects of B2R or bradykinin B1 receptor (B1R) on cardioprotection and neuroprotection in I/R with or without diabetes, this study was designed to investigate the role of TK during cerebral I/R injury in streptozotocin-induced diabetic rats. Intravenous injection of TK inhibited apoptosis in neurons, alleviated edema and inflammatory reactions after focal cerebral I/R, significantly reduced the infarct volume, and improved functional recovery. These beneficial effects were accompanied by activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP response element-binding (CREB), and Bcl-2 signal proteins. Inhibition of the B2R or ERK1/2 pathway abated the effects of TK, whereas an antagonist of B1R enhanced the effects. These findings reveal that the neuroprotective effect of TK against cerebral I/R injury in streptozotocin-induced diabetic rats mainly involves the enhancement of B2R and ERK1/2-CREB-Bcl-2 signaling pathway activity.


2015 ◽  
Vol 309 (10) ◽  
pp. F852-F863 ◽  
Author(s):  
Sara Hirsch ◽  
Tarek El-Achkar ◽  
Lynn Robbins ◽  
Jeannine Basta ◽  
Monique Heitmeier ◽  
...  

It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS ( Sall1 TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1 TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1 TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1 TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1 TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury.


Sign in / Sign up

Export Citation Format

Share Document