scholarly journals Salidroside mitigates skeletal muscle atrophy in rats with cigarette smoke-induced COPD by up-regulating myogenin and down-regulating myostatin expression

2019 ◽  
Vol 39 (11) ◽  
Author(s):  
Dan Zhang ◽  
Lihua Cao ◽  
Zhenshan Wang ◽  
Haoshen Feng ◽  
Xu Cai ◽  
...  

Abstract Objectives: The present study aimed at investigating the therapeutic effect of Salidroside on skeletal muscle atrophy in a rat model of cigarette smoking-induced chronic obstructive pulmonary disease (COPD) and its potential mechanisms. Methods: Male Wistar rats were randomized, and treated intraperitoneally (IP) with vehicle (injectable water) or a low, medium or high dose of Salidroside, followed by exposure to cigarette smoking daily for 16 weeks. A healthy control received vehicle injection and air exposure. Their lung function, body weights and gastrocnemius (GN) weights, grip strength and cross-section area (CSA) of individual muscular fibers in the GN were measured. The levels of TNF-α, IL-6, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) in serum and GN tissues as well as myostatin and myogenin expression in GN tissues were measured. Results: In comparison with that in the healthy control, long-term cigarette smoking induced emphysema, significantly impaired lung function, reduced body and GN weights and CSA values in rats, accompanied by significantly increased levels of TNF-α, IL-6 and MDA, but decreased levels of SOD and GSH in serum and GN tissues. Furthermore, cigarette smoking significantly up-regulated myostatin expression, but down-regulated myogenin expression in GN tissues. Salidroside treatment decreased emphysema, significantly ameliorated lung function, increased antioxidant, but reduced MDA, IL-6 and TNF-α levels in serum and GN tissues of rats, accompanied by decreased myostain, but increased myogenin expression in GN tissues. Conclusion: Salidroside mitigates the long-term cigarette smoking-induced emphysema and skeletal muscle atrophy in rats by inhibiting oxidative stress and inflammatory responses and regulating muscle-specific transcription factor expression.

Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2274
Author(s):  
Roi Cal ◽  
Heidi Davis ◽  
Alish Kerr ◽  
Audrey Wall ◽  
Brendan Molloy ◽  
...  

Skeletal muscle is the metabolic powerhouse of the body, however, dysregulation of the mechanisms involved in skeletal muscle mass maintenance can have devastating effects leading to many metabolic and physiological diseases. The lack of effective solutions makes finding a validated nutritional intervention an urgent unmet medical need. In vitro testing in murine skeletal muscle cells and human macrophages was carried out to determine the effect of a hydrolysate derived from vicia faba (PeptiStrong: NPN_1) against phosphorylated S6, atrophy gene expression, and tumour necrosis factor alpha (TNF-α) secretion, respectively. Finally, the efficacy of NPN_1 on attenuating muscle waste in vivo was assessed in an atrophy murine model. Treatment of NPN_1 significantly increased the phosphorylation of S6, downregulated muscle atrophy related genes, and reduced lipopolysaccharide-induced TNF-α release in vitro. In a disuse atrophy murine model, following 18 days of NPN_1 treatment, mice exhibited a significant attenuation of muscle loss in the soleus muscle and increased the integrated expression of Type I and Type IIa fibres. At the RNA level, a significant upregulation of protein synthesis-related genes was observed in the soleus muscle following NPN_1 treatment. In vitro and preclinical results suggest that NPN_1 is an effective bioactive ingredient with great potential to prolong muscle health.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Tsun-Li Cheng ◽  
Zi-Yun Lin ◽  
Keng-Ying Liao ◽  
Wei-Chi Huang ◽  
Cian-Fen Jhuo ◽  
...  

Magnesium lithospermate B (MLB) is a primary hydrophilic component of Danshen, the dried root of Salvia miltiorrhiza used in traditional medicine, and its beneficial effects on obesity-associated metabolic abnormalities were reported in our previous study. The present study investigated the anti-muscle atrophy potential of MLB in mice with high-fat diet (HFD)-induced obesity. In addition to metabolic abnormalities, the HFD mice had a net loss of skeletal muscle weight and muscle fibers and high levels of muscle-specific ubiquitin E3 ligases, namely the muscle atrophy F-box (MAFbx) and muscle RING finger protein 1 (MuRF-1). MLB supplementation alleviated those health concerns. Parallel changes were revealed in high circulating tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), skeletal TNF receptor I (TNFRI), nuclear factor-kappa light chain enhancer of activated B cells (NF-κB), p65 phosphorylation, and Forkhead box protein O1 (FoxO1) as well as low skeletal phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) phosphorylation. The study revealed that MLB prevented obesity-associated skeletal muscle atrophy, likely through the inhibition of MAFbx/MuRF-1-mediated muscular degradation. The activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-α/TNFRI/NF-κB pathway were assumed to be beneficial effects of MLB.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Wang ◽  
Xin-Feng Jiao ◽  
Cheng Wu ◽  
Xiao-Qing Li ◽  
Hui-Xian Sun ◽  
...  

AbstractSkeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.


2020 ◽  
Vol 21 (3) ◽  
pp. 1111 ◽  
Author(s):  
Hongwei Geng ◽  
Qinglong Song ◽  
Yunyun Cheng ◽  
Haoyang Li ◽  
Rui Yang ◽  
...  

Dexamethasone (Dex) has been widely used as a potent anti-inflammatory, antishock, and immunosuppressive agent. However, high dose or long-term use of Dex is accompanied by side effects including skeletal muscle atrophy, whose underlying mechanisms remain incompletely understood. A number of microRNAs (miRNAs) have been shown to play key roles in skeletal muscle atrophy. Previous studies showed significantly increased miR-322 expression in Dex-treated C2C12 myotubes. In our study, the glucocorticoid receptor (GR) was required for Dex to increase miR-322 expression in C2C12 myotubes. miR-322 mimic or miR-322 inhibitor was used for regulating the expression of miR-322. Insulin-like growth factor 1 receptor (IGF1R) and insulin receptor (INSR) were identified as target genes of miR-322 using luciferase reporter assays and played key roles in Dex-induced muscle atrophy. miR-322 overexpression promoted atrophy in Dex-treated C2C12 myotubes and the gastrocnemius muscles of mice. Conversely, miR-322 inhibition showed the opposite effects. These data suggested that miR-322 contributes to Dex-induced muscle atrophy via targeting of IGF1R and INSR. Furthermore, miR-322 might be a potential target to counter Dex-induced muscle atrophy. miR-322 inhibition might also represent a therapeutic approach for Dex-induced muscle atrophy.


2022 ◽  
Author(s):  
Yohei Shirakami ◽  
Junichi Kato ◽  
Toshihide Maeda ◽  
Takayasu Ideta ◽  
Hiroyasu Sakai ◽  
...  

Abstract Although liver diseases, including non-alcoholic steatohepatitis (NASH), are associated with skeletal muscle atrophy, the mechanism behind their association has not been fully elucidated. In this study, the effects of aging and NASH on the skeletal muscle and the interaction between the liver and muscle were investigated using a diet-induced NASH model in senescence-accelerated mice (SAM). A total of four groups of SAM and its control mice were fed either an NASH-inducing or control diet. In the SAM/NASH group, the histopathology of NASH and markers of oxidative stress were significant. Skeletal muscles were also markedly atrophied. The expression of the ubiquitin ligase Murf1 in the muscle was significantly increased with muscle atrophy, while that of Tnfa was not significantly different. In contrast, the hepatic Tnfa expression and serum TNF-α levels were significantly increased in the SAM/NASH group. These results suggest that liver-derived TNF-α might promote muscle atrophy associated with steatohepatitis and aging through Murf-1. The metabolomic analysis of skeletal muscle indicated higher spermidine and lower tryptophan levels in the NASH-diet group. The findings of this study revealed an aspect of liver-muscle interaction, which might be important in developing treatments for sarcopenia associated with liver diseases.


Author(s):  
Li Wang ◽  
Ming-Qing He ◽  
Xi-Yu Shen ◽  
Kang-Zhen Zhang ◽  
Can Zhao ◽  
...  

Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can also improve skeletal muscle performance both in human and mice. We here showed that dexamethasone induced atrophy, evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression , and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLRP3, Caspase-1 and GSDMD. Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine administration ameliorated dexamethasone-induced muscle atrophy both in vivo and in vitro. Moreover, trimetazidine improved exercise tolerance, as evidenced by increased running distance and running time, as well as increased skeletal muscle mass in dexamethasone-treated mice. Mechanically, trimetazidine could reverse dexamethasone-induced activation of pyroptosis both in C2C12 myotubes and in mice. Taken together, our present study demonstrated that NLRP3/GSDMD pathway-mediated pyroptosis was involved in dexamethasone-induced skeletal muscle atrophy. Trimetazidine could partially alleviate dexamethasone-induced skeletal muscle atrophy, and increase the diameter of C2C12 myotubes via inhibiting pyroptosis. Thus, trimetazidine might be a potential therapeutic compound for the prevention of muscle atrophy in glucocorticoid-treated patients.


2012 ◽  
Vol 302 (10) ◽  
pp. E1210-E1220 ◽  
Author(s):  
Monica L. Watson ◽  
Leslie M. Baehr ◽  
Holger M. Reichardt ◽  
Jan P. Tuckermann ◽  
Sue C. Bodine ◽  
...  

Glucocorticoids (GCs) are important regulators of skeletal muscle mass, and prolonged exposure will induce significant muscle atrophy. To better understand the mechanism of skeletal muscle atrophy induced by elevated GC levels, we examined three different models: exogenous synthetic GC treatment [dexamethasone (DEX)], nutritional deprivation, and denervation. Specifically, we tested the direct contribution of the glucocorticoid receptor (GR) in skeletal muscle atrophy by creating a muscle-specific GR-knockout mouse line (MGRe3KO) using Cre-lox technology. In MGRe3KO mice, we found that the GR is essential for muscle atrophy in response to high-dose DEX treatment. In addition, DEX regulation of multiple genes, including two important atrophy markers, MuRF1 and MAFbx, is eliminated completely in the MGRe3KO mice. In a condition where endogenous GCs are elevated, such as nutritional deprivation, induction of MuRF1 and MAFbx was inhibited, but not completely blocked, in MGRe3KO mice. In response to sciatic nerve lesion and hindlimb muscle denervation, muscle atrophy and upregulation of MuRF1 and MAFbx occurred to the same extent in both wild-type and MGRe3KO mice, indicating that a functional GR is not required to induce atrophy under these conditions. Therefore, we demonstrate conclusively that the GR is an important mediator of skeletal muscle atrophy and associated gene expression in response to exogenous synthetic GCs in vivo and that the MGRe3KO mouse is a useful model for studying the role of the GR and its target genes in multiple skeletal muscle atrophy models.


2020 ◽  
Vol 21 (8) ◽  
pp. 2811
Author(s):  
Ahyoung Yoo ◽  
Young Jin Jang ◽  
Jiyun Ahn ◽  
Chang Hwa Jung ◽  
Hyo Deok Seo ◽  
...  

As obesity promotes ectopic fat accumulation in skeletal muscle, resulting in impaired skeletal muscle and mitochondria function, it is associated with skeletal muscle loss and dysfunction. This study investigated whether Chrysanthemi zawadskii var. latilobum (CZH) protected mice against obesity-induced skeletal muscle atrophy and the underlying molecular mechanisms. High-fat diet (HFD)-induced obese mice were orally administered either distilled water, low-dose CZH (125 mg/kg), or high-dose CZH (250 mg/kg) for 8 w. CZH reduced obesity-induced increases in inflammatory cytokines levels and skeletal muscle atrophy, which is induced by expression of atrophic genes such as muscle RING-finger protein 1 and muscle atrophy F-box. CZH also improved muscle function according to treadmill running results and increased the muscle fiber size in skeletal muscle. Furthermore, CZH upregulated mRNA and protein levels of protein arginine methyltransferases (PRMT)1 and PRMT7, which subsequently attenuated mitochondrial dysfunction in the skeletal muscle of obese mice. We also observed that CZH significantly decreased PRMT6 mRNA and protein expression, which resulted in decreased muscle atrophy. These results suggest that CZH ameliorated obesity-induced skeletal muscle atrophy in mice via regulation of PRMTs in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document