scholarly journals 20(S)-ginsenoside Rh2 as agent for the treatment of LMN-CRC via regulating epithelial–mesenchymal transition

2020 ◽  
Vol 40 (3) ◽  
Author(s):  
Yihang Yuan ◽  
Jue Wang ◽  
Ming Xu ◽  
Yunpeng Zhang ◽  
Zhiqiang Wang ◽  
...  

Abstract The lymph node metastasis of colorectal cancer (LMN-CRC) seriously threatens the prognosis of patients. Chemotherapy, as the most common treatment, results in severe bone marrow suppression. 20(S)-ginsenoside Rh2 (SGRh2), a major effective constituent of ginseng, has demonstrated therapeutic effects on a variety of diseases, including some tumours. SGRh2 treatment had no effect on other organs. Therefore, ginsenosides are considered a safe and effective antineoplastic drug. However, the effects of SGRh2 on LMN-CRC remain unknown. The present study investigated the potential effect of SGRh2 on LMN-CRC in vitro and in vivo. SW480 and CoLo205 cell lines were treated with SGRh2. SGRh2 dose-dependently decreased CRC cell proliferation by CCK-8, colony formation and Edu assays. The Transwell and scratch assays revealed that SGRh2 inhibits the migratory and invasive abilities of CRC cells in a dose-dependent manner. Furthermore, the results of Western blotting revealed that SGRh2 decreased the expression of matrix metalloproteinase (MMP)-2 and MMP9. In terms of the underlying mechanisms, SGRh2 regulates CRC metastasis by affecting epithelial–mesenchymal transition (EMT), which significantly up-regulated epithelial biomarkers (E-cadherin) and down-regulated mesenchymal biomarkers (N-cadherin and vimentin) and EMT transcriptional factors (Smad-3, Snail-1, and Twist-1). In vivo, SGRh2 significantly inhibited LMN-CRC without affecting other normal organs. Immunohistochemical results showed that SGRh2 treats LMN-CRC by regulating EMT. These results demonstrate that SGRh2 has therapeutic potential for LMN-CRC.

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Xuehua Chen ◽  
Yongquan Huang ◽  
Hui Chen ◽  
Ziman Chen ◽  
Jiaxin Chen ◽  
...  

Abstract Background Insufficient radiofrequency ablation (IRFA) can promote the local recurrence and distal metastasis of residual hepatocellular carcinoma (HCC), which makes clinical treatment extremely challenging. In this study, the malignant transition of residual tumors after IRFA was explored. Then, arsenic-loaded zeolitic imidazolate framework-8 nanoparticles (As@ZIF-8 NPs) were constructed, and their therapeutic effect on residual tumors was studied. Results Our data showed that IRFA can dramatically promote the proliferation, induce the metastasis, activate the epithelial–mesenchymal transition (EMT) and accelerate the angiogenesis of residual tumors. Interestingly, we found, for the first time, that extensive angiogenesis after IRFA can augment the enhanced permeability and retention (EPR) effect and enhance the enrichment of ZIF-8 nanocarriers in residual tumors. Encouraged by this unique finding, we successfully prepared As@ZIF-8 NPs with good biocompatibility and confirmed that they were more effective than free arsenic trioxide (ATO) in sublethal heat-induced cell proliferation suppression, apoptosis induction, cell migration and invasion inhibition, and EMT reversal in vitro. Furthermore, compared with free ATO, As@ZIF-8 NPs exhibited remarkably increased therapeutic effects by repressing residual tumor growth and metastasis in vivo. Conclusions This work provides a new paradigm for the treatment of residual HCC after IRFA. Graphical Abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.


Pharmacology ◽  
2019 ◽  
Vol 104 (5-6) ◽  
pp. 312-319 ◽  
Author(s):  
Can Wei ◽  
Junfeng Jing ◽  
Yanbin Zhang ◽  
Ling Fang

Background: Wogonoside, an effective component of Scutellaria baicalensis extract, has recently become a hot topic for its newly discovered anticancer efficacy, but the underlying pharmacological mechanism is still unclear. In this study, we tested the inhibitory effects of wogonoside in human prostate cancer PC3 cells in vitro and vivo. Methods: The effects of wogonoside on cell viability, cycle progression, invasion, migration, and apoptosis were assessed in vitro. The levels of proteins in related signaling pathways were detected by western blotting assay. Finally, nude mouse tumorigenicity assay was conducted to detect the anticancer effect of wogonoside in vivo. Results: Wogonoside inhibited cell viability, invasive and migratory ability in a time- and dose-dependent manner. Flow cytometry indicated that wogonoside could induce cell apoptosis and S phase cell-cycle arrest. Mechanically, wogonoside suppressed the Wnt/β-catenin signaling pathway, and the level of p-glycogen synthase kinase-3β (GSK-3β; Ser9) was inhibited by wogonoside. The epithelial-mesenchymal transition (EMT) process was also reversed in PC3 cell line after wogonoside treatment. In vivo experiments showed that wogonoside inhibited tumor growth in xenograft mouse models. Conclusion: These findings revealed that wogonoside could suppress Wnt/β-catenin pathway and reversing the EMT process in PC3 cells. GSK-3β acts as a tumor suppressor in prostate cancer. Wogonoside may serve as an effective agent for treating prostate cancer.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaw8500
Author(s):  
Hong-Mei Li ◽  
Yan-Ran Bi ◽  
Yang Li ◽  
Rong Fu ◽  
Wen-Cong Lv ◽  
...  

The zinc finger transcription factor Snail is aberrantly activated in many human cancers and associated with poor prognosis. Therefore, targeting Snail is expected to exert therapeutic benefit in patients with cancer. However, Snail has traditionally been considered “undruggable,” and no effective pharmacological inhibitors have been identified. Here, we found a small-molecule compound CYD19 that forms a high-affinity interaction with the evolutionarily conserved arginine-174 pocket of Snail protein. In aggressive cancer cells, CYD19 binds to Snail and thus disrupts Snail’s interaction with CREB-binding protein (CBP)/p300, which consequently impairs CBP/p300-mediated Snail acetylation and then promotes its degradation through the ubiquitin-proteasome pathway. Moreover, CYD19 restores Snail-dependent repression of wild-type p53, thus reducing tumor growth and survival in vitro and in vivo. In addition, CYD19 reverses Snail-mediated epithelial-mesenchymal transition (EMT) and impairs EMT-associated tumor invasion and metastasis. Our findings demonstrate that pharmacologically targeting Snail by CYD19 may exert potent therapeutic effects in patients with cancer.


2020 ◽  
Author(s):  
Yunliang Lu ◽  
Xiaohui Zhou ◽  
Weilin Zhao ◽  
Zhipeng Liao ◽  
Bo Li ◽  
...  

Abstract Background Acy1 Coenzyme A Acyltransferases1 (ACAT1) is a key enzyme in the metabolism of ketone bodies, but its expression and biological function in the pathogenesis of NPC remains underexplored. Methods The mRNA and protein expression levels of ACAT1 in NPC and normal control tissues were analyzed by qPCR and immunohistochemistry staining, respectively. GEO database was applied for meta-analysis of ACAT1 mRNA expression and DNA promoter methylation. The role of ACAT1 in NPC proliferation was examined by CCK8 and colony formation assays in vitro and tumorigenicity in vivo. The wound healing and transwell assays were used for analyzing the migratory and invasive ability. cDNA microarray analysis was performed to identify the genes involved in epithelial-mesenchymal transition and dysregulated by ACAT1. These changes were further confirmed by western blot. Results We found that ACAT1 is inactivated in NPC cell lines and primary tissues. DNA microarray data showed higher methylation in the CpG island region of ACAT1 in NPC than normal tissues. The demethylating reagent 5-aza-dC significantly restored the transcription of ACAT1 in NPC cell lines, suggesting that ACAT1 was inactivated by DNA promoter hypermethylation. Ectopic overexpression of ACAT1 remarkably suppressed the proliferation and colony formation of NPC cells in vitro. As well, the tumorigenesis of NPC cells overexpressing ACAT1 was decreased in vivo. In addition, the migratory and invasive capacities of NPC cells was inhibited by ACAT1 overexpression. Importantly, the higher level of ACAT1 was accompanied by an increased expression of CDH1, EPCAM, and a decreased expression of vimentin and SPARC. This strongly indicates that ACAT1 is able to affect the epithelial-mesenchymal transition in NPC, thereby controlling cellular motility. In addition, we found that ACAT1 expression increases the intracellular level of β-HB. Moreover, exogenous β-HB remarkably inhibits the growth of NPC cells in a dose-dependent manner. Conclusions We have discovered that the ketone body metabolism enzyme ACAT1 is epigenetically downregulated in NPC and acts as a potential tumor suppressor in NPC. Our findings highlight the possibility of using the modulation of ketone body metabolism as effective adjuvant therapy for NPC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Li ◽  
Haojie Wang ◽  
Zhijie Liu ◽  
Alimujiang Abudureyimu

Background: Up until now, the role of circSETD3 (Has_circ_0000567) in regulating cancer development has been reported in several tumors, but the role and regulatory mechanism of circSETD3 in hepatoblastoma (HB) remain unclear.Methods: The qPCR and western blotting were used to determine the mRNA and protein levels in the present study. Stability of circular RNA was detected by RNA digested experiments. The gain-of-function and rescue experiments were used to explore the function and mechanism of circSETD3 in HB. Cell counting kit-8, colony formation, transwell assay, and xenograft mice model were used to detect effects and regulatory mechanism of circSETD3/miR-423-3p/Bim axis on cell aggressive phenotype in vitro and in vivo.Results: Here, we identified that circSETD3 downregulated in both HB clinical tissues and cell lines, compared to that of normal tissues and cells. Further gain-of-function experiments validated that circSETD3 overexpression inhibited cell proliferation, viability, migration, epithelial-mesenchymal transition (EMT) and tumorigenesis, and induced cell apoptosis in HB cells. Next, we validated that miR-423-3p targeted both circSETD3 and 3′ untranslated region (3′UTR) of Bim, and circSETD3 positively regulated Bim in HB cells through sponging miR-423-3p in a competing endogenous RNA (ceRNA)-dependent manner. Furthermore, through conducting reversal experiments, we evidenced that the inhibiting effects of circSETD3 overexpression on HB development were abrogated by upregulating miR-423-3p and downregulating Bim.Conclusion: Taken together, we evidenced that circSETD3 sponged miR-423-3p to upregulate Bim, resulting in the inhibition of HB development.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2010 ◽  
Vol 298 (4) ◽  
pp. F1006-F1017 ◽  
Author(s):  
Li Zhou ◽  
Ping Fu ◽  
Xiao Ru Huang ◽  
Fei Liu ◽  
Arthur C. K. Chung ◽  
...  

Aristolochic acid nephropathy (AAN) has become a worldwide disease and is the most severe complication related to the use of traditional Chinese medicine. However, the pathogenic mechanisms of AAN remain unclear and therapies are limited. The present study tested the hypothesis that transforming growth factor (TGF)-β/Smad3 may be a key pathway leading to chronic AAN. This was examined in vivo in Smad3 wild-type/knockout (WT/KO) mice and in vitro in tubular epithelial cells with knockdown of Smad2 or Smad3. Results revealed that chronic administration of aristolochic acid (AA) resulted in a severe AAN characterized by progressive renal dysfunction and tubulointerstitial fibrosis including epithelial-mesenchymal transition (EMT) in Smad3 WT mice, but not in Smad3 KO mice, suggesting a critical role for Smad3 in the development of AAN. This was further tested in vitro. We found that AA was able to activate Smad signaling to mediate EMT and renal fibrosis via both TGF-β-dependent and JNK/MAP kinase-dependent mechanisms because blockade of JNK and specific knockdown of Smad3, but not Smad2, were able to attenuate AA-stimulated collagen matrix expression and EMT. In conclusion, TGF-β/Smad3 may be an essential mediator for chronic AAN. Results from this study indicate that specific blockade of the TGF-β/Smad3 signaling pathway may have therapeutic potential for chronic AAN.


2021 ◽  
Author(s):  
Xuehua Chen ◽  
Hao Wang ◽  
Hui Chen ◽  
Ziman Chen ◽  
Jiaxin Chen ◽  
...  

Abstract BackgroundInsufficient radiofrequency ablation (IRFA) can promote the local recurrence and distal metastasis of residual hepatocellular carcinoma (HCC), which makes clinical treatment extremely challenging. In this study, the malignant transition of residual tumors after IRFA was explored. Then, arsenic-loaded zeolitic imidazolate framework-8 nanoparticles (As@ZIF-8 NPs) were constructed, and their therapeutic effect on residual tumors was studied. ResultsOur data showed that IRFA can dramatically promote the proliferation, induce the metastasis, activate the epithelial-mesenchymal transition (EMT) and accelerate the angiogenesis of residual tumors. Interestingly, we found, for the first time, that extensive angiogenesis after IRFA can augment the enhanced permeability and retention (EPR) effect and enhance the enrichment of ZIF-8 nanocarriers in residual tumors. Encouraged by this unique finding, we successfully prepared As@ZIF-8 NPs with good biocompatibility and confirmed that they were more effective than free arsenic trioxide (ATO) in sublethal heat-induced cell proliferation suppression, apoptosis induction, cell migration and invasion inhibition, and EMT reversal in vitro. Furthermore, compared with free ATO, As@ZIF-8 NPs exhibited remarkably increased therapeutic effects by repressing residual tumor growth and metastasis in vivo.ConclusionsThis work provides a new paradigm for the treatment of residual HCC after IRFA.


2021 ◽  
Author(s):  
zhaotao wang ◽  
yongping Li ◽  
minyi liu ◽  
danmin chen ◽  
yunxiang ji ◽  
...  

Abstract BackgroundGlioblastoma (GBM) is a tumor of the central nervous system carries an extremely poor prognosis. Unfortunately, it also is the most frequently encountered tumor in this region. These tumors arise from glioblastoma stem cells (GSCs), which are glioma cells that are known to possess high degrees of stemness. GBM invades through the process of EMT, which features loss of cell differentiation and polarity. Survivin is a type of apoptotic inhibitor that has been characterized in several malignancies such as glioma. Normal tissues rarely express survivin. On the other hand, 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO) represents an autophagy inhibitor and activates the mTOR pathway. It has been reported that 3BDO shows anti-cancer activities in lung carcinoma. However, the effects of 3BDO on GBM reminds unknown. Therefore, the purpose of this study was to explore the role and molecular mechanisms that 3BDO mediates in GBM.MethodCCK-8 experiments and clone formation assay were performed to detect the cell proliferation. Transwell assay was conducted to examined cell migration and invasion. Western blotting and immunofluorescence staining was used to analyze protein expression levels. Xenograft mouse model was used to evaluate the effect of 3BDO in vivo.ResultsWe found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additonally, 3BDO decreased the sphere formation and stemness markers (sox2, nestin and CD133) in GSCs. 3BDO also inhibited migration, invasion and suppressed EMT markers (N-cadherin, vimentin and snail) in GBM cells. Moreover, we found that 3BDO downregulated survivin expression of survivin both in GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin reduced the therapeutic effects of 3BDO on GBM cell EMT, invasion, migration and proliferation, as well as decreased stemness in GSCs. Finally, we demonstrated that 3BDO inhibited tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO diminished suvivin expression, stemness and levels of EMT makers in vivo.Conclusionsour results demonstrated that 3BDO repressed GBM via downregulating survivin-mediated stemness and EMT both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document