scholarly journals Circular RNA CDR1as Inhibits the Metastasis of Gastric Cancer through Targeting miR-876-5p/GNG7 Axis

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jiajia Jiang ◽  
Rong Li ◽  
Junyi Wang ◽  
Jie Hou ◽  
Hui Qian ◽  
...  

Circular RNA CDR1as has been demonstrated to participate in various cancer progressions as miRNA sponges. The exact underlying mechanisms of CDR1as on gastric cancer (GC) metastasis remain unknown. Here, we found that CDR1as knockdown facilitated GC cell migration and invasion while its overexpression inhibited the migration and invasion abilities of GC cells in vitro and in vivo. Moreover, epithelial-mesenchymal transition- (EMT-) associated proteins and MMP2 and MMP9 were downregulated by CDR1as. Bioinformatics analysis combined with dual-luciferase reporter gene assays, western blot, RT-qPCR analysis, and functional rescue experiments demonstrated that CDR1as served as a miR-876-5p sponge and upregulated the target gene GNG7 expression to suppress GC metastasis. In summary, our findings indicate that CDR1as suppresses GC metastasis through the CDR1as/miR-876-5p/GNG7 axis.

2020 ◽  
Vol 43 (6) ◽  
pp. 1017-1033 ◽  
Author(s):  
Yizhi Xiao ◽  
Side Liu ◽  
Jiaying Li ◽  
Weiyu Dai ◽  
Weimei Tang ◽  
...  

Abstract Purpose Growing evidence indicates that aberrant expression of microRNAs contributes to tumor development. However, the biological role of microRNA-4490 (miR-4490) in gastric cancer (GC) remains to be clarified. Methods To explore the function of miR-4490 in GC, we performed colony formation, EdU incorporation, qRT-PCR, Western blotting, in situ hybridization (ISH), immunohistochemistry (IHC), flow cytometry, ChIP and dual-luciferase reporter assays. In addition, the growth, migration and invasion capacities of GC cells were evaluated. Results We found that miR-4490 was significantly downregulated in primary GC samples and in GC-derived cell lines compared with normal controls, and that this expression level was negatively correlated with GC malignancy. Exogenous miR-4490 expression not only reduced cell cycle progression and proliferation, but also significantly inhibited GC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, we found that miR-4490 directly targets USP22, which mediates inhibition of GC cell proliferation and EMT-induced metastasis in vitro and in vivo. Moreover, we found through luciferase and ChIP assays that transcription factor POU2F1 can directly bind to POU2F1 binding sites within the miR-4490 and USP22 promoters and, by doing so, modulate their transcription. Spearman’s correlation analysis revealed a positive correlation between USP22 and POU2F1 expression and negative correlations between miR-4490 and USP22 as well as miR-4490 and POU2F1 expression in primary GC tissues. Conclusion Based on our results we conclude that miR-4490 acts as a tumor suppressor, and that the POU2F1/miR-4490/USP22 axis plays an important role in the regulation of growth, invasion and EMT of GC cells.


2017 ◽  
Vol 42 (3) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dehu Chen ◽  
Guiyuan Liu ◽  
Ning Xu ◽  
Xiaolan You ◽  
Haihua Zhou ◽  
...  

Background/Aims: Gastric cancer (GC) is a common and lethal malignancy, and AMP-activated protein kinase-related kinase 5 (ARK5) has been discovered to promote cancer metastasis in certain types of cancer. In this study, we explored the role of ARK5 in GC invasion and metastasis. Methods: ARK5 and epithelial-mesenchymal transition (EMT)-related markers were determined by immunohistochemistry and western blot in GC specimens. Other methods including stably transfected against ARK5 into SGC7901 and AGS cells, western blot, migration and invasion assays in vitro and nude mice tumorigenicity in vivo were also employed. Results: The results demonstrated that ARK5 expression was increased and positively correlated with metastasis, EMT-related markers and poor prognosis in patients with GC. Knockdown of ARK5 expression remarkably suppressed GC cells invasion and metastasis via regulating EMT, rather than proliferation in vitro and in vivo. And knockdown of ARK5 expression in GC cells resulted in the down-regulation of the mTOR/p70S6k signals, Slug and SIP1. Conclusion: The elevated ARK5 expression was closely associated with cancer metastasis and patient survival, and it seemed to function in GC cells migration and invasion via EMT alteration, together with the alteration of the mTOR/p70S6k signals, Slug and SIP1, thus providing a potential therapeutic target for GC.


2020 ◽  
Author(s):  
Sisi Wei ◽  
Shiping Sun ◽  
Xinliang Zhou ◽  
Cong Zhang ◽  
Xiaoya Li ◽  
...  

Abstract A substantial fraction of transcripts are known as long noncoding RNAs (lncRNAs), and these transcripts play pivotal roles in the development of cancer. However, little information has been published regarding the functions of lncRNAs in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanisms. In our previous studies, we demonstrated that small nucleolar RNA host gene 5 (SNHG5), a known lncRNA, is dysregulated in gastric cancer (GC). In this study, we explored the expression and function of SNHG5 in development of ESCC. SNHG5 was found to be downregulated in human ESCC tissues and cell lines, and this downregulation was associated with cancer progression, clinical outcomes and survival rates of ESCC patients. Furthermore, we also found that overexpression of SNHG5 significantly inhibited the proliferation, migration and invasion of ESCC cells in vivo and in vitro. Notably, we found that metastasis-associated protein 2 (MTA2) was pulled down by SNHG5 in ESCC cells using RNA pulldown assay. We also found that SNHG5 reversed the epithelial–mesenchymal transition by interacting with MTA2. In addition, overexpression of SNHG5 downregulated the transcription of MTA2 and caused its ubiquitin-mediated degradation. Thus, overexpression of MTA2 partially abrogated the effect of SNHG5 in ESCC cell lines. Furthermore, we found that MTA2 mRNA expression was significantly elevated in ESCC specimens, and a negative correlation between SNHG5 and MTA2 expression was detected. Overall, this study demonstrated, for the first time, that SNHG5-regulated MTA2 functions as an important player in the progression of ESCC and provide a new potential therapeutic strategy for ESCC.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Ben Yue ◽  
Chenlong Song ◽  
Linxi Yang ◽  
Ran Cui ◽  
Xingwang Cheng ◽  
...  

Abstract Background As one of the most frequent chemical modifications in eukaryotic mRNAs, N6-methyladenosine (m6A) modification exerts important effects on mRNA stability, splicing, and translation. Recently, the regulatory role of m6A in tumorigenesis has been increasingly recognized. However, dysregulation of m6A and its functions in tumor epithelial-mesenchymal transition (EMT) and metastasis remain obscure. Methods qRT-PCR and immunohistochemistry were used to evaluate the expression of methyltransferase-like 3 (METTL3) in gastric cancer (GC). The effects of METTL3 on GC metastasis were investigated through in vitro and in vivo assays. The mechanism of METTL3 action was explored through transcriptome-sequencing, m6A-sequencing, m6A methylated RNA immunoprecipitation quantitative reverse transcription polymerase chain reaction (MeRIP qRT-PCR), confocal immunofluorescent assay, luciferase reporter assay, co-immunoprecipitation, RNA immunoprecipitation and chromatin immunoprecipitation assay. Results Here, we show that METTL3, a major RNA N6-adenosine methyltransferase, was upregulated in GC. Clinically, elevated METTL3 level was predictive of poor prognosis. Functionally, we found that METTL3 was required for the EMT process in vitro and for metastasis in vivo. Mechanistically, we unveiled the METTL3-mediated m6A modification profile in GC cells for the first time and identified zinc finger MYM-type containing 1 (ZMYM1) as a bona fide m6A target of METTL3. The m6A modification of ZMYM1 mRNA by METTL3 enhanced its stability relying on the “reader” protein HuR (also known as ELAVL1) dependent pathway. In addition, ZMYM1 bound to and mediated the repression of E-cadherin promoter by recruiting the CtBP/LSD1/CoREST complex, thus facilitating the EMT program and metastasis. Conclusions Collectively, our findings indicate the critical role of m6A modification in GC and uncover METTL3/ZMYM1/E-cadherin signaling as a potential therapeutic target in anti-metastatic strategy against GC.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5710
Author(s):  
Xiaohui Zhang ◽  
Tingyu Li ◽  
Ya-Nan Han ◽  
Minghui Ge ◽  
Pei Wang ◽  
...  

Metastasis contributes to the poor prognosis of colorectal cancer, the causative factor of which is not fully understood. Previously, we found that miR-125b (Accession number: MIMAT0000423) contributed to cetuximab resistance in colorectal cancer (CRC). In this study, we identified a novel mechanism by which miR-125b enhances metastasis by targeting cystic fibrosis transmembrane conductance regulator (CFTR) and the tight junction-associated adaptor cingulin (CGN) in CRC. We found that miR-125b expression was upregulated in primary CRC tumors and metastatic sites compared with adjacent normal tissues. Overexpression of miR-125b in CRC cells enhanced migration capacity, while knockdown of miR-125b decreased migration and invasion. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays identified CFTR and CGN as the target genes of miR-125b, and the inhibitory impact of CFTR and CGN on metastasis was further verified both in vitro and in vivo. Moreover, we found that miR-125b facilitated the epithelial-mesenchymal transition (EMT) process and the expression and secretion of urokinase plasminogen activator (uPA) by targeting CFTR and enhanced the Ras Homolog Family Member A (RhoA)/Rho Kinase (ROCK) pathway activity by targeting CGN. Together, these findings suggest miR-125b as a key functional molecule in CRC and a promising biomarker for the diagnosis and treatment of CRC.


2020 ◽  
Author(s):  
Yizhuo Lu ◽  
Jia Cheng ◽  
Wangyu Cai ◽  
Huiqin Zhuo ◽  
Guoyang Wu ◽  
...  

Abstract Background Circular RNA VPS33B (circVPS33B) is upregulated in gastric cancer (GC) tissues. However, the role of circVPS33B in infiltrative GC is indistinct. Methods Expression of circVPS33B, miR-873-5p, and heterogeneous nuclear ribonucleoprotein K (HNRNPK) mRNA was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, colony formation, migration, and invasion of infiltrative GC cells (XGC-1) were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), plate clone, wound healing, or transwell assays. Several protein levels were examined by western blotting. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of XGC-1 cells were evaluated by XF96 extracellular flux analyzer. Glucose uptake and lactate production were analyzed by glycolysis assay. The relationship between circVPS33B or HNRNPK and miR-873-5p was verified by dual-luciferase reporter and/or RNA pull-down assays. In vivo tumorigenesis assay was executed for verifying the in vitro results. Results CircVPS33B and HNRNPK were upregulated while miR-873-5p was downregulated in infiltrative GC tissues and XGC-1 cells. CircVPS33B silencing decreased tumor growth in vivo and inhibited proliferation, colony formation, migration, invasion, and Warburg effect of XGC-1 cells in vitro. CircVPS33B regulated HNRNPK expression via sponging miR-873-5p. The inhibitory influence of circVPS33B knockdown on the malignancy and Warburg effect of XGC-1 cells was overturned by miR-873-5p inhibitor. HNRNPK overexpression reversed the repression of the malignancy and Warburg effect of XGC-1 cells caused by miR-873-5p mimic. Conclusions CircVPS33B accelerated infiltrative GC progression through regulating the miR-873-5p/HNRNPK axis, manifesting that circVPS33B might be a promising target for infiltrative GC treatment.


2020 ◽  
Author(s):  
Xinglong Dai ◽  
Jianjun Liu ◽  
Xiong Guo ◽  
Anqi Cheng ◽  
Xiaoya Deng ◽  
...  

Background: Mounting evidence has displayed critical roles of circular RNAs (circRNAs) in multiple cancers. The underlying mechanisms by which circFGD4 contributed to gastric cancer (GC) are still unclear. Methods: The levels and clinical values of circFGD4 in GC patients were detected and analysed by quantitative real-time PCR. The biological roles of circFGD4 in GC were assessed in vitro and in vivo experiments. Dual-luciferase reporter, fluorescence in situ hybridization, RNA immunoprecipitation, biotin-coupled RNA pull-down, and TOP/Flash and FOP/Flash reporter gene assays were employed to evaluate the effects of circFGD4 on miR-532-3p-mediated adenomatous polyposis coli (APC)/β-catenin signalling in GC cells. Results: circFGD4 expression was down-regulated the most in human GC tissues and cell lines. Low expression of circFGD4 was correlated with poor tumour differentiation, lymphatic metastasis, and poor prognosis of GC patients. circFGD4 suppressed GC cell viability, colony formation, migration, induced epithelial-mesenchymal transition (EMT) and tumorigenesis and metastasis in vivo. Next, we validated that circFGD4 acted as a sponge of miR-532-3p to relieve the tumour-promoting effects of miR-532-3p on its target APC. The mechanistic analysis demonstrated that the circFGD4 suppressed GC cell viability, migration, and EMT by modulating the miR-532-3p/APC axis to inactivate the β-catenin signalling. Conclusion: circFGD4 suppressed GC progression through sponging miR-532-3p and enhancing APC expression to inactivate the β-catenin signalling. Thus circFGD4 provides a novel potential biomarker and valuable therapeutic strategy for GC.


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 104-116
Author(s):  
Xiaobo Chen ◽  
Hongwen Sun ◽  
Yunping Zhao ◽  
Jing Zhang ◽  
Guosheng Xiong ◽  
...  

AbstractBackgroundThe aim of this study was to investigate the circ_0004370 expression in EC, its effects on cell proliferation, apoptosis, migration, invasion, and epithelial–mesenchymal transition (EMT) process, and the underlying regulatory mechanisms in EC.MethodsThe protein levels of COL1A1 and EMT-related proteins were detected by western blot. The role of circ_0004370 on cell viability, proliferation, and apoptosis was analyzed by Cell Counting Kit-8 (CCK-8) assay, colony formation assay, and flow cytometry, respectively. The transwell assay was used to examine cell migration and invasion. The binding sites between miR-1301-3p and circ_0004370 or COL1A1 were predicted by starbase software and confirmed by dual-luciferase reporter assay and RNA pull-down assay.ResultsWe discovered that circ_0004370 was remarkably upregulated in EC tissues and cells. Knockdown of circ_0004370 inhibited cell proliferation, migration as well as invasion, and promoted apoptosis in vitro, while its effect was rescued by miR-1301-3p inhibition. And circ_0004370 mediated the EMT process in EC cells. Moreover, we explored its regulatory mechanism and found that circ_0004370 directly bound to miR-1301-3p and COL1A1 was verified as a target of miR-1301-3p. COL1A1 was highly expressed in EC cells and upregulation of COL1A1 reversed the effects of miR-1301-3p on cell proliferation, migration, invasion, and apoptosis. In addition, silencing of circ_0004370 reduced tumor volumes and weights in vivo. We showed that circ_0004370/miR-1301-3p/COL1A1 axis played the critical role in EC to regulate the cell activities.ConclusionCirc_0004370 promotes EC proliferation, migration and invasion, and EMT process and suppresses apoptosis by regulating the miR-1301-3p/COL1A1 axis, indicating that circ_0004370 may be used as a potential therapeutic target for EC.


2020 ◽  
Author(s):  
Yizhuo Lu ◽  
Jia Cheng ◽  
Wangyu Cai ◽  
Huiqin Zhuo ◽  
Guoyang Wu ◽  
...  

Abstract Background: Circular RNA VPS33B (circVPS33B) is upregulated in gastric cancer (GC) tissues. However, the role of circVPS33B in infiltrative GC is indistinct. Methods: Expression of circVPS33B, miR-873-5p, and heterogeneous nuclear ribonucleoprotein K (HNRNPK) mRNA was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, colony formation, migration, and invasion of infiltrative GC cells (XGC-1) were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), plate clone, wound healing, or transwell assays. Several protein levels were examined by western blotting. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of XGC-1 cells were evaluated by XF96 extracellular flux analyzer. Glucose uptake and lactate production were analyzed by glycolysis assay. The relationship between circVPS33B or HNRNPK and miR-873-5p was verified by dual-luciferase reporter and/or RNA pull-down assays. In vivo tumorigenesis assay was executed for verifying the in vitro results.Results: CircVPS33B and HNRNPK were upregulated while miR-873-5p was downregulated in infiltrative GC tissues and XGC-1 cells. CircVPS33B silencing decreased tumor growth in vivo and inhibited proliferation, colony formation, migration, invasion, and Warburg effect of XGC-1 cells in vitro. CircVPS33B regulated HNRNPK expression via sponging miR-873-5p. The inhibitory influence of circVPS33B knockdown on the malignancy and Warburg effect of XGC-1 cells was overturned by miR-873-5p inhibitor. HNRNPK overexpression reversed the repression of the malignancy and Warburg effect of XGC-1 cells caused by miR-873-5p mimic.Conclusions: CircVPS33B accelerated infiltrative GC progression through regulating the miR-873-5p/HNRNPK axis, manifesting that circVPS33B might be a promising target for infiltrative GC treatment.


2021 ◽  
Author(s):  
Rong Li ◽  
Jiajia Jiang ◽  
Junyi Wang ◽  
Jie Hou ◽  
Dongli Wang ◽  
...  

Abstract Background Gastric cancer (GC) is a common malignancy worldwide. Circular RNA CDR1as has been reported as a crucial regulator in human diseases including cancer. However, its biological roles, mechanisms and clinical values in GC remain largely unknown. Methods and Results CDR1as levels were surveyed in paired GC and adjacent normal tissues, paired blood samples from GC patients and healthy controls by RT-qPCR. Its clinical values were evaluated by ROC analysis, survival analysis and correlations with clinic pathological features. Cell transfection was performed to manipulate gene expression. In vitro CCK8 and colony formation assays and in vivo xenograft mouse model were employed to determine CDR1as effects on GC growth. CDR1as-miRNA and miRNA-mRNA interactions were predicted by bioinformatics analysis and further verified by RIP, dual-luciferase reporter gene assays, RT-qPCR, western blot and functional rescue experiments. Our results showed that CDR1as level was significantly downregulated in GC tissues and correlated with nerve invasion and poor prognosis. GC patients presented higher plasma CDR1as level than healthy controls. Functionally, knockdown of CDR1as inhibited GC cell proliferation and viability while its overexpression promoted GC growth in vitro and in vivo. The proliferation-related proteins PCNA and Cyclin D1 and apoptosis-related proteins Bax, Bcl-2, Caspase-3 and Caspase-9 were regulated. Mechanistically, CDR1as acted as a miR-299-3p sponge to relieve its suppressive effects and upregulate TGIF1 expression to promote GC growth.Conclusions CDR1as may be considered as a potential diagnostic and prognostic biomarker for GC. CDR1as/miR-299-3p/TGIF1 axis promotes GC growth in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document