scholarly journals Bioinformatics analysis of potential core genes for glioblastoma

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Yu Zhang ◽  
Xin Yang ◽  
Xiao-Lin Zhu ◽  
Jia-Qi Hao ◽  
Hao Bai ◽  
...  

Abstract Background: Glioblastoma (GBM) has a high degree of malignancy, aggressiveness and recurrence rate. However, there are limited options available for the treatment of GBM, and they often result in poor prognosis and unsatisfactory outcomes. Materials and methods: In order to identify potential core genes in GBM that may provide new therapeutic insights, we analyzed three gene chips (GSE2223, GSE4290 and GSE50161) screened from the GEO database. Differentially expressed genes (DEG) from the tissues of GBM and normal brain were screened using GEO2R. To determine the functional annotation and pathway of DEG, Gene Ontology (GO) and KEGG pathway enrichment analysis were conducted using DAVID database. Protein interactions of DEG were visualized using PPI network on Cytoscape software. Next, 10 Hub nodes were screened from the differentially expressed network using MCC algorithm on CytoHubba software and subsequently identified as Hub genes. Finally, the relationship between Hub genes and the prognosis of GBM patients was described using GEPIA2 survival analysis web tool. Results: A total of 37 up-regulated and 187 down-regulated genes were identified through microarray analysis. Amongst the 10 Hub genes selected, SV2B appeared to be the only gene associated with poor prognosis in glioblastoma based on the survival analysis. Conclusion: Our study suggests that high expression of SV2B is associated with poor prognosis in GBM patients. Whether SV2B can be used as a new therapeutic target for GBM requires further validation.

2021 ◽  
Author(s):  
Li Guoquan ◽  
Du Junwei ◽  
He Qi ◽  
Fu Xinghao ◽  
Ji Feihong ◽  
...  

Abstract BackgroundHashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is a common autoimmune disease, which mainly occurs in women. The early manifestation was hyperthyroidism, however, hypothyroidism may occur if HT was not controlled for a long time. Numerous studies have shown that multiple factors, including genetic, environmental, and autoimmune factors, were involved in the pathogenesis of the disease, but the exact mechanisms were not yet clear. The aim of this study was to identify differentially expressed genes (DEGs) by comprehensive analysis and to provide specific insights into HT. MethodsTwo gene expression profiles (GSE6339, GSE138198) about HT were downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were assessed between the HT and normal groups using the GEO2R. The DEGs were then sent to the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were discovered using Cytoscape and CytoHubba. Finally, NetworkAnalyst was utilized to create the hub genes' targeted microRNAs (miRNAs). ResultsA total of 62 DEGs were discovered, including 60 up-regulated and 2 down-regulated DEGs. The signaling pathways were mainly engaged in cytokine interaction and cytotoxicity, and the DEGs were mostly enriched in immunological and inflammatory responses. IL2RA, CXCL9, IL10RA, CCL3, CCL4, CCL2, STAT1, CD4, CSF1R, and ITGAX were chosen as hub genes based on the results of the protein-protein interaction (PPI) network and CytoHubba. Five miRNAs, including mir-24-3p, mir-223-3p, mir-155-5p, mir-34a-5p, mir-26b-5p, and mir-6499-3p, were suggested as likely important miRNAs in HT. ConclusionsThese hub genes, pathways and miRNAs contribute to a better understanding of the pathophysiology of HT and offer potential treatment options for HT.


2020 ◽  
Author(s):  
Bolin Wu ◽  
Haitao Shang ◽  
Xitian Liang ◽  
Huajing Yang Huajing Yang ◽  
Hui Jing ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) poses a severe threat to human health. The NET-1 protein has been proved to be strongly associated with HCC proliferation and metastasis in our previous study. Methods: Here, we developed a label-free proteome mass spectrometry workflow to analyze formalin-fixed and paraffin-embedded HCC xenograft samples collected in our previous study. Results: The result showed that 78 proteins were differentially expressed after NET-1 protein inhibited. Among them, the expression of 61 proteins up-regulated and the expression of 17 proteins were significantly down-regulated. Of the differentially expressed proteins, the vast majority of Gene Ontology enrichment terms belong to the biological process. The KEGG pathway enrichment analysis showed that the 78 differentially expressed proteins significantly enriched in 45 pathways. We concluded that the function of the NET-1 gene is not only to regulate HCC but also to participate in a variety of biochemical metabolic pathways in the human body. Furthermore, the protein-protein interaction analysis indicated that the interactions of differentially expressed proteins are incredibly sophisticated. All the protein-protein interactions happened after the NET-1 gene has been silenced. Conclusions: Finally, our study also provides a useful proposal for targeted therapy based on tetraspanin proteins to treat HCC, and further mechanism investigations are needed to reveal a more detailed mechanism of action for NET-1 protein regulation of HCC.


2021 ◽  
Author(s):  
XueZhen LIANG ◽  
Di LUO ◽  
Yan-Rong CHEN ◽  
Jia-Cheng LI ◽  
Bo-Zhao YAN ◽  
...  

Abstract Purpose: Steroid-induced osteonecrosis of the femoral head (SONFH) was a refractory orthopedic hip joint disease in the young and middle-aged people. Previous experimental studies had shown that autophagy might be involved in the pathological process of SONFH, but the pathogenesis of autophagy in SONFH remained unclear. We aim to identify and validate the key potential autophagy-related genes of SONFH to further illustrate the mechanism of autophagy in SONFH through bioinformatics analysis. Methods: The mRNA expression profile dataset GSE123568 was download from Gene Expression Omnibus (GEO) database, including 10 non-SONFH (following steroid administration) samples and 30 SONFH samples. The autophagy-related genes were obtained from the Human Autophagy Database (HADb). The autophagy-related genes of SONFH were screened by intersecting GSE123568 dataset with autophagy genes. The differentially expressed autophagy-related genes of SONFH were identified by R software. Besides, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted for the differentially expressed autophagy-related genes of SONFH by R software. Then, the correlation analysis between the expression levels of differentially expressed autophagy-related genes of SONFH was confirmed by R software. Moreover, the protein–protein interaction (PPI) network were analyzed by the Search Tool for the Retrieval of Interacting Genes (STRING), and the significant gene cluster modules were identified by the MCODE Cytoscape plugin, and hub genes of differentially expressed autophagy-related genes of SONFH were screened by the CytoHubba Cytoscape plugin. Finally, the expression levels of hub genes of differentially expressed autophagy-related genes of SONFH was validated in hip articular cartilage specimens from necrosis femur head (NFH) by GSE74089 dataset. Results: A total of 34 differentially expressed autophagy-related genes were identified between the peripheral blood of SONFH samples and non-SONFH Samples based on the defined criteria, including 25 up-regulated genes and 9 down-regulated genes. The GO and KEGG pathway enrichment analysis revealed that these 34 differentially expressed autophagy-related genes of SONFH were concentrated in death domain receptors, FOXO signaling pathway and apoptosis. The correlation analysis revealed a significant correlation among the 34 differentially expressed autophagy-related genes of SONFH. The PPI results demonstrated that the 34 differentially expressed autophagy-related genes interacted with each other. There were 10 hub genes identified by the MCC algorithms of Cytohubba. The results of GSE74089 dataset showed TNFSF10, PTEN and CFLAR were significantly upregulated while BCL2L1 were significantly downregulated in the hip cartilage specimens, which were consistent with the GSE123568 dataset. Conclusions: There were 34 potential autophagy-related genes of SONFH identified using bioinformatics analysis. TNFSF10, PTEN, CFLAR and BCL2L1 might serve as potential drug targets and biomarkers by regulating autophagy. These results would expand new insights into the autophagy-related understanding of SONFH and might be useful in the diagnosis and prognosis of SONFH.


2020 ◽  
Author(s):  
tao ming Shao ◽  
zhi yang Hu ◽  
wen wei Li ◽  
long yun Pan

Abstract Purpose. Breast cancer (BC) has a poor prognosis when brain metastases (BM) occur, and the treatment effect is limited. In this study, we aim to identify representative candidate biomarkers for clinical prognosis of patients with BM and explore the mechanisms underlying the progression of BC.Methods. Herein, we examined the Microarray datasets (GSE125989) obtained from the Gene Expression Omnibus database to find the target genes in BC patients with BM. We employed the GEO2R tool to filter the differentially expressed genes (DEGs) that participate in primary BC and BC with BM. Subsequently, using the DAVID tool, we conducted an enrichment analysis with the screened DEGs based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional annotation. The STRING database was employed to analyze the protein-protein interactions of the DEGs and visualized using Cytoscape software. Lastly, the Kaplan-Meier plotter database was employed to determine the prognostic potential of hub genes in BC.Results. We screened out 311 upregulated DEGs and 104 downregulated DEGs. The enrichment analyses revealed that all the DEGs were` enriched in the biological process of extracellular matrix organization, cell adhesion, proteolysis, collagen catabolic process and immune response. The significant enrichment pathways were focal adhesion, protein absorption and digestion, ECM-receptor interaction, PI3K-Akt signalling pathway, and Pathways in cancer. The top ten hub nodes screened out included FN1, VEGFA, COL1A1, MMP2, COL3A1, COL1A2, POSTN, DCN, BGN and LOX. The Kaplan-Meier plotter results showed that the three hub genes (FN1, VEGFA and DCN) are candidate biomarkers for clinical prognosis of patients with BM.Conclusion. we identified seven genes related to poor prognosis in BCBM. FN1, VEGFA and DCN can be considered as potential prognostic markers for BCBM. Meantime, COL1A1, POSTN, BGN and LOX may be linked to the distant transformation of BC.


2020 ◽  
Author(s):  
Ling Zhang ◽  
Lu Gao ◽  
Yu Zhao ◽  
Xuelei Ma

Abstract The ceRNA network has been demonstrated to play crucial roles in multiple biological processes and the development of neoplasms, which have the potential to become diagnostic and prognosis markers and therapeutic targets. In this work, we comparing the expression profiles between sarcoma identified differentially expressed genes (DEGs), lncRNAs (DELs) and miRNAs (DEMs) in sarcomas and normal tissue samples in GEO datasets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied to investigate the major functions of the overlapping DEGs. Then, lncRNA-miRNA interactions and miRNA-mRNA interactions were predicted, and a ceRNA regulatory network was constructed. In addition, the mRNAs included in ceRNA network were used to construct the protein-protein interactions network, and the survival analysis of sarcomas was performed according to the biomarkers included in the ceRNA network. According to the RNA sequence data from GEO dataset, 1296 DEGs were identified in sarcoma samples by combining the GO and Pathway enrichment analysis, 338 DELs were discovered after re-annotating the probes, and 36 DEGs were ascertained through intersecting two different expression miRNAs sets. Further, 448 miRNA-mRNA interactions and 454 miRNA-lncRNA interactions were obtained through target gene prediction, and then, we constructed a lncRNA-miRNA-mRNA ceRNA network containing 9 miRNAs, 69 lncRNAs and 113 mRNAs. PPI network showed that the hub up-regulated nodes include IGF1, PRKCB and GNAI3, and the hub down-regulated nodes include AR, CYCS and PPP1CB. Survival analysis revealed that the expression levels of 12 RNAs involved in the ceRNA network were associated with overall survival of sarcoma patients. Our study showed that the ceRNA network in sarcomas based on that lncRNA could serve as ceRNA and discovered the potential indicators for prognosis of sarcoma patients.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii277-iii277
Author(s):  
Wei Liu ◽  
Yi Chai ◽  
Junhua Wang ◽  
Yuqi Zhang

Abstract BACKGROUND Atypical teratoid/rhabdoid tumors (ATRT) are rare, highly malignant neoplasms arising in infants and young children. However, the biological basis of ATRTs remains poorly understood. In the present study, we employed integrated bioinformatics to investigate the hub genes and potential molecular mechanism in ATRT. METHODS Three microarray datasets, GSE35943, GSE6635 and GSE86574, were downloaded from Gene Expression Omnibus (GEO) which contained a total of 79 samples including 32 normal brain tissue samples and 47 ATRT samples. The RobustRankAggreg method was employed to integrate the results of these gene expression datasets to obtain differentially expressed genes (DEGs). The GO function and KEGG pathway enrichment analysis were conducted at the Enrichr database. The hub genes were screened according to the degree using Cytoscape software. Finally, transcription factor (TF) of hub genes were obtained by the NetworkAnalyst algorithm. RESULTS A total of 297 DEGs, consisting of 94 downregulated DEGs and 103 upregulated DEGs were identified. Functional enrichment analysis revealed that these genes were associated with cell cycle, p53 signaling pathway and DNA replication. Protein-protein interaction (PPI) network analysis revealed that CDK1, CCNA2, BUB1B, CDC20, KIF11, KIF20A, KIF2C, NCAPG, NDC80, NUSAP1, PBK, RRM2, TPX2, TOP2A and TTK were hub genes and these genes could be regulated by MYC, SOX2 and KDM5B according to the results of TF analysis. CONCLUSIONS Our study will improve the understanding of the molecular mechanisms and provide novel therapeutic targets for ATRT.


2021 ◽  
Author(s):  
Baoliang Zhang ◽  
Lei Yuan ◽  
Guanghui Chen ◽  
Xi Chen ◽  
Xiaoxi Yang ◽  
...  

Abstract Background: Obese individuals predispose to ossification of ligamentum flavum (OLF), whereas the underlying connections between obesity phenotype and OLF pathomechanism are not fully understood, especially during early life. This study aimed to explore obesity-associated genes and their functional signatures in OLF. Methods: Gene microarray expression data related to OLF were downloaded from the GSE106253 dataset in the Gene Expression Omnibus (GEO) database. The potential obesity-related differentially expressed genes (ORDEGs) in OLF were screened. Then, gene-ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied for these genes. Furthermore, protein-protein interactions (PPI) were used to identify hub ORDEGs, and Metascape was used to further verify the key signaling pathways and immune-related function signatures of hub ORDEGs. Finally, correlation analysis of hub ORDEGs and identified OLF-related infiltrating immune cells (OIICs) was constructed to understand the possible mechanical link among obesity, immune response and OLF. Results: OLF-related differentially expressed genes and 2051 obesity-related genes from four databases were intersected to obtain 99 ORDEGs, including 54 upregulated and 55 downregulated genes. GO and KEGG analysis revealed that these genes were mainly involved in metabolism, inflammation and immune-related biological functions and pathways. A PPI network was established to determine 14 hub genes (AKT1, CCL2, CCL5, CXCL2, ICAM1, IL10, MYC, PTGS2, SAA1, SOCS1, SOCS3, STAT3, TNFRSF1B and VEGFA). The co-expression network demonstrated that this module was associated with cellular response to biotic stimulus, regulation of inflammatory response, regulation of tyrosine phosphorylation of STAT protein. Furthermore, Metascape functional annotations showed that hub genes were mainly involved in receptor signaling pathway via JAK-STAT, response to TNF and regulation of defense response, and their representative enriched pathways were TNF, adipocytokine and JAK-STAT signaling pathways. Subgroup analysis indicated that T cell activation might be potential immune function processes involved, and correlation analysis revealed that cDCs, memory B-cells and preadipocytes were highly correlated infiltrating immune cells. Conclusions: Our study deciphered individualized obesity-associated gene signature for the first time, which may facilitate exploring the underlying cellular and molecular pathogenesis and novel therapeutic targets of obesity-related early-onset OLF.


2021 ◽  
Vol 13 ◽  
Author(s):  
Yu-Qing Wu ◽  
Qiang Liu ◽  
Hai-Bi Wang ◽  
Chen Chen ◽  
Hui Huang ◽  
...  

Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients. Circular RNAs (circRNAs) may contribute to neurodegenerative diseases. However, the role of circRNAs in POCD in aged mice has not yet been reported. This study aimed to explore the potential circRNAs in a POCD model. First, a circRNA microarray was used to analyze the expression profiles. Differentially expressed circRNAs were validated using quantitative real-time polymerase chain reaction. A bioinformatics analysis was then used to construct a competing endogenous RNA (ceRNA) network. The database for annotation, visualization, and integrated discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of circRNA-related genes. Moreover, protein-protein interactions were analyzed to predict the circRNA-regulated hub genes using the STRING and molecular complex detection plug-in of Cytoscape. Microarray screen 124 predicted circRNAs in the POCD of aged mice. We found that the up/downregulated circRNAs were involved in multiple signaling pathways. Hub genes, including Egfr and Prkacb, were identified and may be regulated by ceRNA networks. These results suggest that circRNAs are dysexpressed in the hippocampus and may contribute to POCD in aged mice.


2021 ◽  
Author(s):  
Junqiang Yan ◽  
Anran Liu ◽  
Jiarui Huang ◽  
Jiannan Wu ◽  
Hongxia Ma ◽  
...  

Abstract Vestibular schwannoma is a common intracranial benign tumor, but the current drug treatment effect is not obvious. Surgical treatment can usually lead to residual problems such as nerve damage. Therefore, there is no clear molecular target to facilitate better clinical treatment. We analyzed three microarray data sets (GSE39645, GSE54934 and GSE108524) derived from the Gene Expression Omnibus database (GEO). The GEO2R was used to screen for the differentially expressed genes (DEG) between vestibular schwannomas and normal tissues. The ontology function of genes and genome pathway enrichment analysis were performed using annotation, visualizative and comprehensive discovery databases to identify the pathways and functional annotation of DEGs. The protein-protein interactions of these DEGs were analyzed by searching the interaction gene database and visualized by Cytoscape software. The potential therapeutic drugs for vestibular schwannoma were searched by online gene drug interaction analysis.A total of 226 up-regulated and 148 down-regulated DEGs were identified. Among them, ten hub genes with high connectivity (EGFR, PPARG, CD86, CSF1R, SPP1, CDH2, CCND1, CAV1, CYBB and NCAM1) were selected as the central genes that may be closely related to the pathogenesis of vestibular schwannoma, which can be potential treatment targets of vestibular schwannoma. Afatinib and osimerinib may be potential therapeutic drugs.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Houxi Xu ◽  
Yuzhu Ma ◽  
Jinzhi Zhang ◽  
Jialin Gu ◽  
Xinyue Jing ◽  
...  

Colorectal cancer, a malignant neoplasm that occurs in the colorectal mucosa, is one of the most common types of gastrointestinal cancer. Colorectal cancer has been studied extensively, but the molecular mechanisms of this malignancy have not been characterized. This study identified and verified core genes associated with colorectal cancer using integrated bioinformatics analysis. Three gene expression profiles (GSE15781, GSE110223, and GSE110224) were downloaded from the Gene Expression Omnibus (GEO) databases. A total of 87 common differentially expressed genes (DEGs) among GSE15781, GSE110223, and GSE110224 were identified, including 19 upregulated genes and 68 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed for common DEGs using clusterProfiler. These common DEGs were significantly involved in cancer-associated functions and signaling pathways. Then, we constructed protein-protein interaction networks of these common DEGs using Cytoscape software, which resulted in the identification of the following 10 core genes: SST, PYY, CXCL1, CXCL8, CXCL3, ZG16, AQP8, CLCA4, MS4A12, and GUCA2A. Analysis using qRT-PCR has shown that SST, CXCL8, and MS4A12 were significant differentially expressed between colorectal cancer tissues and normal colorectal tissues (P<0.05). Gene Expression Profiling Interactive Analysis (GEPIA) overall survival (OS) has shown that low expressions of AQP8, ZG16, CXCL3, and CXCL8 may predict poor survival outcome in colorectal cancer. In conclusion, the core genes identified in this study contributed to the understanding of the molecular mechanisms involved in colorectal cancer development and may be targets for early diagnosis, prevention, and treatment of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document