scholarly journals Resveratrol protects against apoptosis induced by interleukin-1β in nucleus pulposus cells via activating mTOR/caspase-3 and GSK-3β/caspase-3 pathways

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Xiaohui Guo ◽  
Xiaoliang Bai ◽  
Feng Zhang ◽  
Long Zheng ◽  
Wenyuan Ding ◽  
...  

Abstract Objective: The purpose of the present study was to investigate the specific downstream signaling pathway mediated by PI3K/Akt in resveratrol (RES) anti-apoptosis of nucleus pulposus cells (NPCs). Materials and methods: Human NPCs were cultured and divided into six groups. Interleukin (IL)-1β was used to induce apoptosis and RES to inhibit apoptosis. Fluorescence-activated cell sorting (FACS) analysis was used to test apoptotic incidence of NPCs, cell counting kit-8 (CCK-8) assay was performed to detect cell viability, The expression level of caspase-3 mRNA was detected by RT-qPCR, and protein levels were determined by Western blot. Results: Flow cytometry analysis showed that IL-1β increased the apoptosis rate of NPCs in each group, and RES significantly decreased the apoptosis rate, while rapamycin (RAPA) and SB216763 inhibited the effect of RES and increased the apoptosis rate again. Similarly, CCK-8 showed that IL-1β decreased activity of NPCs in each group, while RES increased cell activity, RAPA and SB216763 inhibited the effect of RES and decreased cell activity. RT-qPCR results showed IL-1β significantly increased the level of caspase-3 expression, but it was significantly decreased by using RES, RAPA and SB216763 respectively attenuated effects of RES. Western blot results showed that activated caspase-3 was inhibited by RES effect, and was up-regulated again after the addition of RAPA and SB216763. In addition, p-mTOR and p-GSK-3β were up-regulated by RES and down-regulated by RAPA and SB216763. Conclusion: RES can inhibit apoptosis induced by IL-1β in human NPCs. PI3K/Akt/mTOR/caspase-3 and PI3K/Akt/GSK-3β/caspase-3 pathways are potential mechanisms underlying this process.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rong Wang ◽  
Xingchao Zhou ◽  
Guorui Luo ◽  
Jin Zhang ◽  
Min Yang ◽  
...  

Intervertebral disc degeneration (IDD) is widely accepted as a cause of low back pain and related degenerative musculoskeletal disorders. Nucleus pulposus (NP) cell loss is closely related to IDD progression. Thus, investigating the specifically targeted therapeutic agents against NP cell loss depends on understanding the molecular mechanisms. In this study, human NP cells were treated with hydrogen peroxide (H2O2). Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) kit. The expression of circRNA arginine-glutamic acid dipeptide repeats (hsa_circ_RERE) and miR-299-5p was analyzed by real-time quantitative PCR. Western blot analysis was used to assess the protein expression levels. The autophagy levels in NP cells were detected by using an electronic microscope, LC3B protein immunofluorescence, and western blot. The apoptosis levels of NP cells were detected by flow cytometry and western blot. Dual-luciferase reporter assay analyzed the miR-299-5p bound to circ_RERE and galectin-3. Our results revealed that H2O2 significantly inhibited the viability of NP cells, promoted apoptosis and autophagy, and upregulated galectin-3 expression. miR-299-5p was reduced in IDD and H2O2-induced NP cells. The overexpression of miR-299-5p promoted cell viability and attenuated apoptosis and autophagy under H2O2 treatment. Besides, circ_RERE was upregulated in IDD and H2O2-induced NP cells. However, knockdown of circ_RERE reversed the effects of miR-299-5p overexpression on cell viability, apoptosis, and autophagy in NP cells. We propose that circ_RERE promotes the H2O2-induced apoptosis and autophagy of NP cells through the miR-299-5p/galectin-3 axis and may provide a new target for the clinical treatment of IDD.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaoxun Du ◽  
Xiaoying Wang ◽  
Kaiying Cui ◽  
Yungang Chen ◽  
Chao Zhang ◽  
...  

Astragaloside IV (AS IV) and tanshinone (TS IIA) are the main natural components of Salvia miltiorrhiza and Radix Astragali, respectively. The amalgam of TS IIA and AS IV has potential therapeutic value in many inflammation-related diseases. However, the aftereffect of TS IIA and AS IV for lumbar disc herniation is not clear. Although the function of miR-223 in the inflammation-related JAK/STAT pathway is unknown, it is particularly expressed in human degenerative nucleus pulposus cells. This study has investigated the efficacy of the combined application of TS IIA and AS IV in the treatment of intervertebral disc nucleus pulposus cells (NP cells) injured by lipopolysaccharide (LPS). After miR-223 inhibitor imitated NP cells, the state of the JAK family and STAT family was recognized by Western blotting (Western blot, WB) and reverse transcriptase quantitative polymerase chain reaction (qPCR). The shRNA lentivirus interference vector targeting the STAT family was constructed, and the NP cell line stably interfering with the STAT gene was established after transfection. The expression of TNF-α, IL-6, MMP-9, MMP-3, caspase-1, and caspase-3 was detected by lipopolysaccharide (WTNP cells), control virus NP cells, STAT downregulation NP cells, enzyme-linked immunosorbent assay (ELISA), Western blot, and qPCR, respectively. The cell survival rate was detected by flow cytometry and TUNEL staining reverse transcriptase-polymerase chain reaction (qPCR). NP cells were treated with TS IIA and AS IV which had been made into different concentrations, and then, the expression of miR-223, p-STAT1, and p-JAK families was detected by WB Western blotting and qPCR. MiR-223 selectively acts on JAK2/STAT1 pathway, increases the expression of TNF-α, IL-6, MMP-9, MMP-3, caspase3-1, and caspase-3, and induces apoptosis, which can be eliminated by silencing STAT1. TS IIA combined with AS IV could inhibit the expression of miR-223, p-STAT1, and p-JAK2 in NP cells, and they showed a dose-dependent tendency to p-STAT1 and p-JAK2. This study shows that miR-223 promotes the inflammatory response and induces cell injury of NP cells by acting on the JAK2/STAT1 pathway, and the combination of TS IIA and AS IV may protect NP cells by downregulating miR-223 and inhibiting the expression of JAK2 and STAT1.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Xian Zhang ◽  
Jiajia Ge ◽  
Xuejuan Zhu ◽  
Haifeng Zhang ◽  
Yuanzi Wang ◽  
...  

The aim of the present study was to investigate the effects and mechanism of oxymatrine (OMT) combined with compound yinchen granules (CYG) on the apoptosis of hepatocytes through the Akt/FoxO3a/Bim pathway in rats with acute liver failure. The rat model of acute liver failure was established using lipopolysaccharide/D-galactosamine (LPS/D-GalN). The expression of proteins in rat liver tissues was detected by western blot analysis. The mRNA expression of FoxO3a, Bim, Bax, Bcl-2, and caspase-3 in rat liver tissues was detected by RT-qPCR. The apoptosis rate of rat hepatocytes was determined by flow cytometry. Western blots showed that when compared with the normal group, the expression of p-Akt and p-FoxO3a in the model group was decreased ( P < 0.05 ), while the expression of Bim was increased ( P < 0.01 ). Compared with the model group, the expression of p-Akt and p-FoxO3a in the OMT group and the OMT combined with CYG groups was increased ( P < 0.05 or P < 0.01 ), while the expression of Bim was decreased ( P < 0.05 ). The Bax/Bcl-2 ratio and caspase-3 protein expression in the model group were significantly higher than those in the normal group ( P < 0.01 ). The Bax/Bcl-2 ratio and the expression of caspase-3 protein in the OMT group and the OMT combined with CYG groups were significantly lower than those in the model group ( P < 0.01 ). The results of RT-qPCR were consistent with those of western blot. The results of flow cytometry showed that the apoptosis rate of hepatocytes in the OMT group and the OMT combined with CYG groups was significantly lower than that in the model group ( P < 0.05 or P < 0.01 ). We concluded that LPS/D-GalN can induce apoptosis of hepatocytes in rats with acute liver failure through the Akt/FoxO3a/Bim pathway. OMT combined with CYG inhibits apoptosis of hepatocytes in rats with acute liver failure via the Akt/FoxO3a/Bim pathway.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Yao Ming-yan ◽  
Zhang Jing ◽  
Guo Shu-qin ◽  
Bai Xiao-liang ◽  
Li Zhi-hong ◽  
...  

Abstract Diabetes mellitus (DM) is a potential etiology of disc degeneration. Glucagon-like peptide-1 (GLP-1) is currently regarded as a powerful treatment option for type 2 diabetes. Apart from the beneficial effects on glycaemic control, GLP-1 has been reported to exert functions in a variety of tissues on modulation of cell proliferation, differentiation, and apoptosis. However, little is known regarding the effects of GLP-1 on nucleus pulposus cells (NPCs). In the present study, we investigated the effects of liraglutide (LIR), a long-lasting GLP-1 analogue, on apoptosis of human NPCs and the underlying mechanisms involved. We confirmed the presence of GLP-1 receptor (GLP-1R) in NPCs. Our data demonstrated that liraglutide inhibited the apoptosis of NPCs induced by high glucose (HG), as detected by Annexin V/Propidium Iodide (PI) and ELISA assays. Moreover, liraglutide down-regulated caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further analysis suggested that liraglutide suppressed reactive oxygen species (ROS) generation and stimulated the phosphorylation of Akt under HG condition. Pretreatment of cells with the Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (LY) and small interfering RNAs (siRNAs) GLP-1R abrogated the liraglutide-induced activation of Akt and the protective effects on NPCs’ apoptosis. In conclusion, liraglutide could directly protect NPCs against HG-induced apoptosis by inhibiting oxidative stress and activate the PI3K/Akt/caspase-3 signaling pathway via GLP-1R.


Author(s):  
Hao Jie Zhang ◽  
Xue Hai Ma ◽  
Song Lin Xie ◽  
Shu lian Qin ◽  
Cong Zhi Liu ◽  
...  

Abstract Background Intervertebral disc degeneration (IVDD) is a well-known cause of lower back pain, which is induced by multiple factors including increased apoptosis and decreased survival of nucleus pulposus cells. In this study, we evaluate the effect and potential mechanism of miR-660 on the nucleus pulposus cells apoptosis induced by TNF-α. Methods First, we collected tissue of nucleus pulposus from IVDD and healthy controls. General characteristic of the IVDD and healthy control was also collected. And, we also collected nucleus pulposus cells that stimulated by TNF-α or control. miRNA microarray was performed to identify the differentially expressed miRNAs. Apoptosis rate and miR-660 relative expression was measured after stimulated with different concentration of TNF-α to identify the optimal concentration of TNF-α. Second, we successfully constructed antigomiR-660 to block the miR-660 expression in nucleus pulposus cells and then stimulated with TNF-α (100 ng/ml, 12 h). The apoptosis rates and relative protein expression were then measured again. The target association between miR-660 and SAA1 was confirmed by dual-luciferase reporter. Results There was no significant difference between the age (IVDD: 39 ± 10 years, healthy controls: 36 ± 7 years), BMI and sex between IVDD and healthy controls. Microarray analysis found that miR-660 was significantly up-regulated in IVDD and TNF-α treated groups, which was further identified by PCR. We found that the rate of apoptosis and miR-660 expression increased with TNF-α concentration increased. Finally, TNF-a with 100 ng/ml was used for further experiment. Compared with TNF-α group, TNF-α + antigomiR-660 could significantly down-regulated the apoptosis rate and relative protein (c-Caspase3 and c-Caspase7). Dual-luciferase reporter revealed that miR-660 could directly binding to the SAA1 at 80–87 sites. Compared with TNF-α alone group, TNF-α + antigomiR-660 significantly up-regulated the SAA1 expression (P < 0.05). Conclusion These results indicated that knockdown of miR-660 protected the nucleus pulposus from apoptosis that induced TNF-α via up-regulation of SAA1. Further studies should focus on the role of miR-660 in protecting IVDD in vivo.


2013 ◽  
Vol 118 (6) ◽  
pp. 1239-1247 ◽  
Author(s):  
Haitao Ju ◽  
Xin Li ◽  
Hong Li ◽  
Xiaojuan Wang ◽  
Hongwei Wang ◽  
...  

Object Signal transducer and activator of transcription 1 (STAT1) is thought to be a tumor suppressor protein. The authors investigated the expression and role of STAT1 in glioblastoma. Methods Immunohistochemistry was used to detect the expression of STAT1 in glioblastoma and normal brain tissues. Reverse transcription–polymerase chain reaction and Western blot analysis were used to detect mRNA and protein expression levels of STAT1. Cell growth, proliferation, migration, apoptosis, and the expression of related genes and proteins (Bcl-2, Bax, cleaved caspase-3, caspase-9, p21, and proliferating cell nuclear antigen) were examined in vitro via cell counting kit-8, wound-healing, flow cytometry, Rhodamine B, TUNEL, and Western blot assays. Results Human glioblastoma had decreased expression of STAT1 proteins. Transfection of the U87MG cells with STAT1 plasmid in vitro demonstrated significant inhibition of cell growth and an increase in apoptotic cell death compared with cells transfected with vector or mock plasmids. These effects were associated with the upregulation of cleaved caspase-3, Bax, and p21 and the downregulation of Bcl-2 expression. Conclusions The results of this study suggest that increased expression of STAT1 by transfection with STAT1 plasmid synergistically inhibits human U87MG glioblastoma cell growth in vitro.


Sign in / Sign up

Export Citation Format

Share Document