Substances that can change alternative splice-site selection

2008 ◽  
Vol 36 (3) ◽  
pp. 483-490 ◽  
Author(s):  
Chiranthani Sumanasekera ◽  
David S. Watt ◽  
Stefan Stamm

Alternative pre-mRNA splicing is an important element in eukaryotic gene expression, as most of the protein-coding genes use this process to generate multiple protein isoforms from a single gene. An increasing number of human diseases are now recognized to be caused by the selection of ‘wrong’ alternative exons. Research during the last few years identified a number of low–molecular-mass chemical substances that can change alternative exon usage. Most of these substances act by either blocking histone deacetylases or by interfering with the phosphorylation of splicing factors. How the remaining large number of these substances affect splicing is not yet fully understood. The emergence of these low-molecular-mass substances provides not only probes for studying alternative pre-mRNA splicing, but also opens the door to the possible harnessing of these compounds as drugs to control diseases caused by the selection of ‘wrong’ splice sites.

Author(s):  
Anna Di Matteo ◽  
Elisa Belloni ◽  
Davide Pradella ◽  
Ambra Cappelletto ◽  
Nina Volf ◽  
...  

AbstractAlternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-13-SCI-13
Author(s):  
Adrian Krainer

Abstract Abstract SCI-13 Most eukaryotic protein-coding genes have one or more introns, and their transcripts can undergo alternative splicing, giving rise to multiple isoforms. Accurate splicing is essential for normal gene expression, and alternative splicing is a key mechanism for expanding the proteome and regulating the expression of diverse protein isoforms. This session will review the general mechanisms of pre-mRNA splicing and the regulation of alternative splicing. In addition, the process of how abnormal splicing arises as a result of intronic or exonic mutations in particular genes, or more globally as a result of splicing-factor misregulation, as well as the contribution of splicing misregulation to cancer, will be described. Lastly the current status of targeted therapeutics development, focusing on antisense approaches to correct abnormal splicing of specific genes or to modulate alternative splicing, will be discussed. Disclosures: Krainer: ISIS Pharmaceuticals: Consultancy, Patents & Royalties, Research Funding.


2019 ◽  
Vol 47 (11) ◽  
pp. 5777-5791 ◽  
Author(s):  
Geoffray Monteuuis ◽  
Anna Miścicka ◽  
Michał Świrski ◽  
Lounis Zenad ◽  
Olli Niemitalo ◽  
...  

Abstract Utilization of non-AUG alternative translation start sites is most common in bacteria and viruses, but it has been also reported in other organisms. This phenomenon increases proteome complexity by allowing expression of multiple protein isoforms from a single gene. In Saccharomyces cerevisiae, a few described cases concern proteins that are translated from upstream near-cognate start codons as N-terminally extended variants that localize to mitochondria. Using bioinformatics tools, we provide compelling evidence that in yeast the potential for producing alternative protein isoforms by non-AUG translation initiation is much more prevalent than previously anticipated and may apply to as many as a few thousand proteins. Several hundreds of candidates are predicted to gain a mitochondrial targeting signal (MTS), generating an unrecognized pool of mitochondrial proteins. We confirmed mitochondrial localization of a subset of proteins previously not identified as mitochondrial, whose standard forms do not carry an MTS. Our data highlight the potential of non-canonical translation initiation in expanding the capacity of the mitochondrial proteome and possibly also other cellular features.


1995 ◽  
Vol 305 (2) ◽  
pp. 445-450 ◽  
Author(s):  
A M Payne ◽  
P Yue ◽  
K Pritchard ◽  
S B Marston

The recent determination of the genomic sequence of human caldesmon indicates that eight caldesmon mRNA species could be generated by selection of exon 1 or 1′, exon 3a or 3ab and/or exon 4. We used reverse transcriptase PCR to determine which transcripts were produced in human, rabbit and sheep artery, vein, lung, intestine, kidney and liver. In all tissues the same three transcripts were present: exons 1′-2-3a-5-6...13, exons 1′-2-3a3b-5-6-...13 and exons 1′-2-3a3b-4-5-6...13. Exon 1 was not present and exon 4 was only present when exon 3b was also present. Three protein isoforms of caldesmon can be distinguished by electrophoresis on high-porosity 6% polyacrylamide gel: 130 kDa, 120 kDa and 70 kDa. The 70 kDa isoform lacks the sequence encoded by exon 3b. We investigated whether the two high-molecular-mass isoforms correspond to the presence and absence of exon 4 using an antiserum specific to the sequence encoded by exon 4. Western-blotting and immunoprecipitation experiments showed that both the 130 kDa and the 120 kDa isoforms were expressed with and without the exon 4 sequence. We therefore propose that the molecular-mass heterogeneity arises from additional first exons, possibly with separate promoter regions, which have not yet been characterized in the genomic sequence.


2020 ◽  
Author(s):  
Debalina Bagchi ◽  
Benjamin D Mason ◽  
Kodilichi Baldino ◽  
Bin Li ◽  
Eun-Joo Lee ◽  
...  

AbstractSkeletal muscle has the remarkable ability to modulate its mass in response to physiological changes associated with nutritional input, functional utilization, systemic disease, and age. A decreased responsiveness to anabolic stimuli is thought to contribute significantly to the loss of skeletal muscle mass and strength associated with sarcopenia, however the molecular mechanisms precipitating this are unclear. The signal transduction pathways that control the relative balance between anabolic and catabolic processes are tightly regulated at the transcriptional and post-transcriptional levels. Alternative splicing produces multiple protein isoforms from a single gene in a cell-type-specific manner and in response to environmental cues. We show that sustained activation of Akt1 in Hnrnpu deficient mice leads to premature muscle wasting, in part, through impaired autophagy while providing mechanistic insights into the development of anabolic resistance.


2014 ◽  
Vol 88 (24) ◽  
pp. 14412-14425 ◽  
Author(s):  
K. Caviness ◽  
L. Cicchini ◽  
M. Rak ◽  
M. Umashankar ◽  
F. Goodrum

2021 ◽  
Vol 80 (3) ◽  
pp. 118-122
Author(s):  
V.P. Dorozhkin ◽  
◽  
E.G. Mokhnatkina ◽  
D.N. Zemsky ◽  
A.D. Valiev ◽  
...  

A method is proposed that allows us to obtain the values of the rate constants (CR) of the processes of mechanodestruction (mechanical cracking) of kм, oxidative destruction of kо, and recombination of kр macromolecules, as well as the mass fractions of the corresponding fractions of φм, φо, and φр,r involved in the plasticization process (P) of SKI-3 isoprene rubber. The method is based on the selection of the values of these parameters that correspond to the previously obtained experimental data, using the previously obtained recurrent equations and a specially developed program. The dependences of the CR on the time P at 30oC are obtained, which allows us to describe the kinetics of the processes accompanying P at this temperature, and the changes in molecular mass (MM) in this process. It is shown that constant values of CR are established at large times of P. Refined explanations of the nature of the kinetics of the CR change at P are proposed. The MM value of SKI-3 macromolecules that have not undergone destruction is calculated, depending on the time of plasticization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthew N. George ◽  
Karla F. Leavens ◽  
Paul Gadue

A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic β-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.


2020 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Monet Stevenson ◽  
Narendra Narendra Banerjee ◽  
Narendra Banerjee ◽  
Kuldeep Rawat ◽  
Lin Chen ◽  
...  

Considering the prevalence of prostate cancer all over the world, it is desired to have tools, technologies, and biomarkers which help in early detection of the disease and discriminate different races and ethnic groups. Genetic information from the single gene analysis and genome-wide association studies have identified few biomarkers, however, the drivers of prostate cancer remain unknown in the majority of prostate cancer patients. In those cases where genetic association has been identified, the genes confer only a modest risk of this cancer, hence, making them less relevant for risk counseling and disease management. There is a need for additional biomarkers for diagnosis and prognosis of prostate cancer. MicroRNAs are a class of non-protein coding RNA molecules that are frequently dysregulated in different cancers including prostate cancer and show promise as diagnostic biomarkers and targets for therapy. Here we describe the role of micro RNA 146a (miR-146a) which may serve as a diagnostic and prognostic marker for prostate cancer, as indicated from the data presented in this report. Also, a pilot study indicated differential expression of miR-146a in prostate cancer cell lines and tissues from different racial groups. Reduced expression of miR-146a was observed in African American tumor tissues compared to those from European Whites This report provides a novel insight into understanding the prostate carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document