The role of ESCRT proteins in attenuation of cell signalling

2009 ◽  
Vol 37 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Lina M. Rodahl ◽  
Susanne Stuffers ◽  
Viola H. Lobert ◽  
Harald Stenmark

The ESCRT (endosomal sorting complex required for transport) machinery consists of four protein complexes that mediate sorting of ubiquitinated membrane proteins into the intraluminal vesicles of multivesicular endosomes, thereby targeting them for degradation in lysosomes. In the present paper, we review how ESCRT-mediated receptor down-regulation affects signalling downstream of Notch and growth factor receptors, and how ESCRTs may control cell proliferation, survival and cytoskeletal functions and contribute to tumour suppression.

2018 ◽  
Vol 46 (2) ◽  
pp. 453-466 ◽  
Author(s):  
Miriam Walden ◽  
Safi Kani Masandi ◽  
Krzysztof Pawłowski ◽  
Elton Zeqiraj

The ubiquitin (Ub) proteasome system and Ub signalling networks are crucial to cell biology and disease development. Deubiquitylases (DUBs) control cell signalling by removing mono-Ub and polyubiquitin chains from substrates. DUBs take part in almost all processes that regulate cellular life and are frequently dysregulated in disease. We have catalogued 99 currently known DUBs in the human genome and sequence conservation analyses of catalytic residues suggest that 11 lack enzyme activity and are classed as pseudo-DUBs. These pseudoenzymes play important biological roles by allosterically activating catalytically competent DUBs as well as other active enzymes. Additionally, pseudoenzymes act as assembly scaffolds of macromolecular complexes. We discuss how pseudo-DUBs have lost their catalytic activity, their diverse mechanisms of action and their potential as therapeutic targets. Many known pseudo-DUBs play crucial roles in cell biology and it is likely that unstudied and overlooked pseudo-DUB genes will have equally important functions.


2018 ◽  
Vol 45 (2) ◽  
pp. 523-536 ◽  
Author(s):  
Xiaohui Gong ◽  
Xianjin Du ◽  
Yong Xu ◽  
Wenze Zheng

Background/Aims: LINC00037 has previously been reported to be up-regulated in clear cell renal cell carcinoma (ccRCC), however, the underlying mechanism remained unknown. In this study, we designed to investigate the functional role of LINC00037 in ccRCC Methods: LINC00037 knockdown and re-expressing 786-O and A498 cells were established. CCK8 assay and EdU assay were performed to evaluate the proliferation rates of ccRCC cells. Flow cytometry assay was performed to detect the cell apoptosis and cell cycle. Subcutaneous injection xenotransplantation mouse model was used to observe the role of LINC00037 in tumor growth in vivo. Mass spectrometry (MS) was performed to find the interacting partner of LINC00037 and RNA immunoprecipitation (RIP) was carried out to validate their interaction. Results: We found that knockdown of LINC00037 resulted in inhibited cell proliferation with activated apoptosis and cell cycle arrest in vitro. Over-expression of LINC00037 in LINC00037 knockdown cells restored and enhanced cell proliferation. In vivo mouse model indicated reduced tumor progression by LINC00037 depletion and promoted tumor progression by LINC00037 overexpression. LINC00037 could bind to epidermal growth factor receptor (EGFR) and increase the protein level of EGFR. Conclusion: LINC00037 could inhibit proliferation of ccRCC in an epidermal growth factor receptor-dependent way.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1334-1334
Author(s):  
Seiji Fukuda ◽  
Mariko Abe ◽  
Seiji Yamaguchi ◽  
Louis M. Pelus

Abstract Survivin is a member of the inhibitor of apoptosis protein family that has been implicated in cell cycle control, anti-apoptosis and cell division. Our previous studies and others have shown that Survivin and the cyclin dependent kinase inhibitor p21WAF1/CDKN1 (p21) are functionally associated and are involved in cell cycle, anti-apoptosis and cytokinesis in cancer cells and in normal hematopoietic progenitor cells (HPC). P21 is highly expressed in quiescent hematopoietic stem cells (HSC) in steady state, but the proportion of quiescent HSCs in G0 phase is reduced in p21−/− mice. In contrast, p21 has been shown as positive regulator on cell cycle of normal HPC since p21 deficiency results in fewer total CFU in mouse bone marrow (BM) cells with fewer CFU in S-phase and retrovirus transduction of p21 in p21 deficient bone marrow cells restores total and cycling CFU. We have previously reported that Survivin increases the proliferation of mouse primary HPC and that this enhancing effect is on HPC proliferation is absent when p21 is functionally deleted, suggesting that p21 is required for Survivin to enhance HPC proliferation. In addition, ITD-Flt3 mutations that are normally expressed in patients with acute myeloid leukemia and associate poor prognosis increase expression of both Survivin and p21, implicating their involvement in aberrant proliferation of HPC expressing ITD-Flt3. Herein we have characterized the functional association between p21 and Survivin in normal and transformed cell proliferation. Antagonizing wild-type Survivin in mouse BaF3 cells by retrovirus transduction of a T34A dominant negative mutant Survivin or anti-sense increased p21 expression, even though Survivin requires p21 to enhance HPC proliferation. Ectopic p21 in Survivin+/+ primary mouse bone marrow cells increased the number of immunophenotypically defined c-kit+, lin− (KL) cells, which is consistent with a positive role of p21 in HPC proliferation, however; ectopic expression of p21 failed to increase HPC proliferation in Survivin deficient primary bone marrow cells, suggesting that p21 alone is not sufficient to substitute for Survivin’s enhancing function on normal HPC proliferation. Over-expression of ITD-Flt3 enhanced growth factor independent proliferation of primary mouse marrow c-kit+, Sca-1+, lin− (KSL) cell number; however, co-expression of p21 with ITD-Flt3 dramatically decreased the number of growth factor independent KSL cells (80±6% reduction: P<0.01). Furthermore, the inhibitory effect of p21 on KLS proliferation was further enhanced by Survivin knockout bone marrow cells (64±5% reduction compared with presence of Survivin: P<0.05). These findings indicate that Survivin and p21 have a overlapping but distinct roles in regulating normal HPC proliferation and that manipulating p21 and Survivin may represent a potential therapeutic target for acute leukemia cells expressing ITD-Flt3.


2007 ◽  
Vol 322 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Maurits M. Barendrecht ◽  
Arthur C. M. Mulders ◽  
Henk van der Poel ◽  
Maurice J. B. van den Hoff ◽  
Martina Schmidt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document