scholarly journals Neuroinflammatory changes increase the impact of stressors on neuronal function

2009 ◽  
Vol 37 (1) ◽  
pp. 303-307 ◽  
Author(s):  
Alessia Piazza ◽  
Marina A. Lynch

In the last few years, several research groups have reported that neuroinflammation is one feature common to several neurodegenerative diseases and that similar, although perhaps less profound, neuroinflammatory changes also occur with age. Age is the greatest risk factor in many neurodegenerative diseases, and the possibility exists that the underlying age-related neuroinflammation may contribute to this increased risk. Several animal models have been used to examine this possibility, and it is now accepted that, under experimental conditions in which microglial activation is up-regulated, responses to stressors are exacerbated. In the present article, these findings are discussed and data are presented from in vitro and in vivo experiments which reveal that responses to Aβ (amyloid β-peptide) are markedly up-regulated in the presence of LPS (lipopolysaccharide). These, and previous findings, point to a vulnerability associated with inflammation and suggest that, even though inflammation may not be the primary cause of neurodegenerative disease, its treatment may decelerate disease progression.

2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Shahazul Islam ◽  
Cristina Quispe ◽  
Rajib Hossain ◽  
Muhammad Torequl Islam ◽  
Ahmed Al-Harrasi ◽  
...  

Quercetin (QUR) is a natural bioactive flavonoid that has been lately very studied for its beneficial properties in many pathologies. Its neuroprotective effects have been demonstrated in many in vitro studies, as well as in vivo animal experiments and human trials. QUR protects the organism against neurotoxic chemicals and also can prevent the evolution and development of neuronal injury and neurodegeneration. The present work aimed to summarize the literature about the neuroprotective effect of QUR using known database sources. Besides, this review focuses on the assessment of the potential utilization of QUR as a complementary or alternative medicine for preventing and treating neurodegenerative diseases. An up-to-date search was conducted in PubMed, Science Direct and Google Scholar for published work dealing with the neuroprotective effects of QUR against neurotoxic chemicals or in neuronal injury, and in the treatment of neurodegenerative diseases. Findings suggest that QUR possess neuropharmacological protective effects in neurodegenerative brain disorders such as Alzheimer’s disease, Amyloid β peptide, Parkinson’s disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis. In summary, this review emphasizes the neuroprotective effects of QUR and its advantages in being used in complementary medicine for the prevention and treatment o of different neurodegenerative diseases.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245922
Author(s):  
Faye Lanni ◽  
Neil Burton ◽  
Debbie Harris ◽  
Susan Fotheringham ◽  
Simon Clark ◽  
...  

Optimised pre-clinical models are required for TB drug development to better predict the pharmacokinetics of anti-tuberculosis (anti-TB) drugs to shorten the time taken for novel drugs and combinations to be approved for clinical trial. Microdialysis can be used to measure unbound drug concentrations in awake freely moving animals in order to describe the pharmacokinetics of drugs in the organs as a continuous sampling technique. The aim of this work was to develop and optimise the microdialysis methodology in guinea pigs to better understand the pharmacokinetics of rifampicin in the lung. In vitro experiments were performed before progressing into in vivo studies because the recovery (concentration of the drug in the tissue fluid related to that in the collected dialysate) of rifampicin was dependent on a variety of experimental conditions. Mass spectrometry of the dialysate was used to determine the impact of flow rate, perfusion fluid and the molecular weight cut-off and membrane length of probes on the recovery of rifampicin at physiologically relevant concentrations. Following determination of probe efficiency and identification of a correlation between rifampicin concentrations in the lung and skeletal muscle, experiments were conducted to measure rifampicin in the sacrospinalis of guinea pigs using microdialysis. Lung concentrations of rifampicin were estimated from the rifampicin concentrations measured in the sacrospinalis. These studies suggest the potential usefulness of the microdialysis methodology to determine drug concentrations of selected anti-TB drugs to support new TB drug development.


Blood ◽  
2011 ◽  
Vol 118 (6) ◽  
pp. 1699-1709 ◽  
Author(s):  
Isabelle Ligi ◽  
Stéphanie Simoncini ◽  
Edwige Tellier ◽  
Paula Frizera Vassallo ◽  
Florence Sabatier ◽  
...  

Abstract Low birth weight (LBW) is associated with increased risk of cardiovascular diseases at adulthood. Nevertheless, the impact of LBW on the endothelium is not clearly established. We investigate whether LBW alters the angiogenic properties of cord blood endothelial colony forming cells (LBW-ECFCs) in 25 preterm neonates compared with 25 term neonates (CT-ECFCs). We observed that LBW decreased the number of colonies formed by ECFCs and delayed the time of appearance of their clonal progeny. LBW dramatically reduced LBW-ECFC capacity to form sprouts and tubes, to migrate and to proliferate in vitro. The angiogenic defect of LBW-ECFCs was confirmed in vivo by their inability to form robust capillary networks in Matrigel plugs injected in nu/nu mice. Gene profile analysis of LBW-ECFCs demonstrated an increased expression of antiangiogenic genes. Among them, thrombospondin 1 (THBS1) was highly expressed at RNA and protein levels in LBW-ECFCs. Silencing THBS1 restored the angiogenic properties of LBW-ECFCs by increasing AKT phosphorylation. The imbalance toward an angiostatic state provide a mechanistic link between LBW and the impaired angiogenic properties of ECFCs and allows the identification of THBS1 as a novel player in LBW-ECFC defect, opening new perspectives for novel deprogramming agents.


2019 ◽  
Vol 10 ◽  
pp. 204062231986480 ◽  
Author(s):  
Hristina Kocic ◽  
Giovanni Damiani ◽  
Bojana Stamenkovic ◽  
Michael Tirant ◽  
Andrija Jovic ◽  
...  

Nutrigenomic DNA reprogramming in different chronic diseases and cancer has been assessed through the stimulation of gene expression and mRNA synthesis versus DNA silencing by CpG DNA modification (methylation); histone modification (acetylation, methylation) and expression of small noncoding RNAs, known as microRNAs (miRNAs). With regard to the specific nutrigenomic effects in psoriasis, the influence of specific diets on inflammatory cell signaling transcriptional factors such as nuclear factor (NF)-κB and Wnt signaling pathways, on disease-related specific cytokine expression, pro/antioxidant balance, keratinocyte proliferation/apoptosis and on proliferation/differentiation ratio have been documented; however, the influence of dietary compounds on the balance between ‘good and bad’ miRNA expression has not been considered. This review aims to summarize knowledge about aberrant microRNAs expression in psoriasis and to emphasize the potential impact of some dietary compounds on endogenous miRNA synthesis in experimental conditions in vivo and in vitro. Among the aberrantly expressed miRNAs in psoriasis, one of the most prominently upregulated seems to be miR-21. The beneficial effects of phenolic compounds (curcumin and resveratrol), vitamin D, methyl donors, and omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid) are discussed. Highly expressed miR-155 has been downregulated by flavonoids (through a quercetin-rich diet) and by vitamin D. Quercetin has been effective in modulating miR-146a. On the other hand, downregulated miR-125b expression was restored by vitamin D, Coenzyme Q10 and by microelement selenium. In conclusion, the miRNA profile, together with other ‘omics’, may constitute a multifaceted approach to explore the impact of diet on psoriasis prevention and treatment.


2015 ◽  
Vol 1 (1) ◽  
pp. 236-239 ◽  
Author(s):  
Sandra Stein ◽  
Christian Simroth-Loch ◽  
Sönke Langner ◽  
Stefan Hadlich ◽  
Oliver Stachs ◽  
...  

AbstractThe in vitro and in vivo characterization of intravitreal injections plays an important role in developing innovative therapy approaches. Using the established vitreous model (VM) and eye movement system (EyeMoS) the distribution of contrast agents with different molecular weight was studied in vitro. The impact of the simulated age-related vitreal liquefaction (VL) on drug distribution in VM was examined either with injection through the gel phase or through the liquid phase. For comparison the distribution was studied ex vivo in the porcine vitreous. The studies were performed in a magnetic resonance (MR) scanner. As expected, with increasing molecular weight the diffusion velocity and the visual distribution of the injected substances decreased. Similar drug distribution was observed in VM and in porcine eye. VL causes enhanced convective flow and faster distribution in VM. Confirming the importance of the injection technique in progress of VL, injection through gelatinous phase caused faster distribution into peripheral regions of the VM than following injection through liquefied phase. VM and MR scanner in combination present a new approach for the in vitro characterization of drug release and distribution of intravitreal dosage forms.


2015 ◽  
Vol 35 (21) ◽  
pp. 3768-3784 ◽  
Author(s):  
Said Movahedi Naini ◽  
Alice M. Sheridan ◽  
Thomas Force ◽  
Jagesh V. Shah ◽  
Joseph V. Bonventre

The G2-to-M transition (or prophase) checkpoint of the cell cycle is a critical regulator of mitotic entry. SIRT2, a tumor suppressor gene, contributes to the control of this checkpoint by blocking mitotic entry under cellular stress. However, the mechanism underlying both SIRT2 activation and regulation of the G2-to-M transition remains largely unknown. Here, we report the formation of a multiprotein complex at the G2-to-M transitionin vitroandin vivo. Group IVA cytosolic phospholipase A2(cPLA2α) acts as a bridge in this complex to promote binding of SIRT2 to cyclin A-Cdk2. Cyclin A-Cdk2 then phosphorylates SIRT2 at Ser331. This phosphorylation reduces SIRT2 catalytic activity and its binding affinity to centrosomes and mitotic spindles, promoting G2-to-M transition. We show that the inhibitory effect of cPLA2α on SIRT2 activity impacts various cellular processes, including cellular levels of histone H4 acetylated at K16 (Ac-H4K16) and Ac-α-tubulin. This regulatory effect of cPLA2α on SIRT2 defines a novel function of cPLA2α independent of its phospholipase activity and may have implications for the impact of SIRT2-related effects on tumorigenesis and age-related diseases.


Sign in / Sign up

Export Citation Format

Share Document