The involvement of microRNAs in Type 2 diabetes

2010 ◽  
Vol 38 (6) ◽  
pp. 1565-1570 ◽  
Author(s):  
David Ferland-McCollough ◽  
Susan E. Ozanne ◽  
Kenneth Siddle ◽  
Anne E. Willis ◽  
Martin Bushell

T2D (Type 2 diabetes mellitus) is a major health issue that has reached epidemic status worldwide. T2D is a progressive metabolic disorder characterized by reduced insulin sensitivity, insulin resistance and pancreatic β-cell dysfunction. Improper treatment of TD2 can lead to severe complications such as heart disease, stroke, kidney failure, blindness and nerve damage. The aetiology and molecular mechanisms of T2D are not fully understood, but compelling evidence points to a link between T2D, obesity, dyslipidaemia and insulin resistance. Although T2D seems to be strongly linked to environmental factors such as nutrition and lifestyle, studies have shown that genetic factors, such as polymorphisms associated with metabolic genes, imprinting, fetal programming and miRNA (microRNA) expression, could also contribute to the development of this disease. miRNAs are small 22–25-nt-long untranslated RNAs that negatively regulate the translation of mRNAs. miRNAs are involved in a large number of biological functions such as development, metabolism, immunity and diseases such as cancer, cardiovascular diseases and diabetes. The present review examines the various miRNAs that have been identified as being potentially involved in T2D, focusing on the insulin-sensitive organs: white adipose tissue, liver, skeletal muscle and the insulin-producing pancreatic β-cells.

Author(s):  
Yoshiro Saito

Abstract Selenoprotein P (SeP; encoded by SELENOP) is selenium (Se)-rich plasma protein that is mainly produced in the liver. SeP functions as a Se-transport protein to deliver Se from the liver to other tissues, such as the brain and testis. The protein plays a pivotal role in Se metabolism and antioxidative defense, and it has been identified as a ‘hepatokine’ that causes insulin resistance in type 2 diabetes. SeP levels are increased in type 2 diabetes patients, and excess SeP impairs insulin signalling, promoting insulin resistance. Furthermore, increased levels of SeP disturb the functioning of pancreatic β cells and inhibit insulin secretion. This review focuses on the biological function of SeP and the molecular mechanisms associated with the adverse effects of excess SeP on pancreatic β cells’ function, particularly with respect to redox reactions. Interactions between the liver and pancreas are also discussed.


2008 ◽  
Vol 36 (3) ◽  
pp. 348-352 ◽  
Author(s):  
Miriam Cnop

The prevalence of Type 2 diabetes is increasing dramatically as a result of the obesity epidemic, and poses a major health and socio-economic burden. Type 2 diabetes develops in individuals who fail to compensate for insulin resistance by increasing pancreatic insulin secretion. This insulin deficiency results from pancreatic β-cell dysfunction and death. Western diets rich in saturated fats cause obesity and insulin resistance, and increase levels of circulating NEFAs [non-esterified (‘free’) fatty acids]. In addition, they contribute to β-cell failure in genetically predisposed individuals. NEFAs cause β-cell apoptosis and may thus contribute to progressive β-cell loss in Type 2 diabetes. The molecular pathways and regulators involved in NEFA-mediated β-cell dysfunction and apoptosis are beginning to be understood. We have identified ER (endoplasmic reticulum) stress as one of the molecular mechanisms implicated in NEFA-induced β-cell apoptosis. ER stress was also proposed as a mechanism linking high-fat-diet-induced obesity with insulin resistance. This cellular stress response may thus be a common molecular pathway for the two main causes of Type 2 diabetes, namely insulin resistance and β-cell loss. A better understanding of the molecular mechanisms contributing to pancreatic β-cell loss will pave the way for the development of novel and targeted approaches to prevent Type 2 diabetes.


2021 ◽  
Vol 22 (19) ◽  
pp. 10311
Author(s):  
Ana Elena Rodriguez-Rodriguez ◽  
Esteban Porrini ◽  
Armando Torres

The combination of insulin resistance and β-cells dysfunction leads to the onset of type-2 diabetes mellitus (T2DM). This process can last for decades, as β-cells are able to compensate the demand for insulin and maintain normoglycemia. Understanding the adaptive capacity of β-cells during this process and the causes of its failure is essential to the limit onset of diabetes. Post-transplant diabetes mellitus (PTDM) is a common and serious disease that affects 30% of renal transplant recipients. With the exception of immunosuppressive therapy, the risk factors for T2D are the same as for PTDM: obesity, dyslipidaemia, insulin resistance and metabolic syndrome. Tacrolimus (TAC) is the immunosuppressant of choice after renal transplantation but it has the highest rates of PTDM. Our group has shown that insulin resistance and glucolipotoxicity, without favouring the appearance of apoptosis, modify key nuclear factors for the maintenance of identity and functionality of β-cells. In this context, TAC accelerates or enhances these changes. Our hypothesis is that the pathways that are affected in the progression from pre-diabetes to diabetes in the general population are the same pathways that are affected by TAC. So, TAC can be considered a tool to study the pathogenesis of T2DM. Here, we review the common pathways of β-cells dysfunction on T2DM and TAC-induced diabetes.


2017 ◽  
Vol 68 (7) ◽  
pp. 1622-1627 ◽  
Author(s):  
Diana Simona Stefan ◽  
Andrada Mihai ◽  
Daiana Bajko ◽  
Daniela Lixandru ◽  
Laura Petcu ◽  
...  

Metabolic surgery is the most efficacious method for the treatment of morbid obesity and was recently included among the antidiabetes treatments recommended in obese type 2 diabetes (T2D) patients. The aim of this study was to compare in a randomized controlled trial the effect of sleeve gastrectomy (SG) to that of intensive lifestyle intervention plus pharmacologic treatment on some markers of insulin resistance and beta cell function as well as some appetite controlling hormones in a group of male obese T2D subjects. The study groups comprised 20 subjects for SG and 21 control subjects. Fasting blood glucose, insulin, proinsulin, adiponectin, leptin, ghrelin, HOMA-IR, HOMA-%B, proinsulin-to-insulin ratio and proinsulin-to-adiponectin ratio were evaluated at baseline and after one year follow-up. Overall, patients in the SG group lost 78.98% of excess weight loss (%EWL) in comparison with 9.45% in the control group. This was accompanied by a significant improvement of insulin resistance markers, including increase of adiponectin and decrease of HOMA-IR, while no changes were recorded in the control group. Weight loss was also associated with a significant improvement of proinsulin-to-insulin and proinsulin-to-adiponectin ratio, both surrogate markers of beta cell dysfunction. These also improved in the control group, but were only marginally significant. Our findings suggest that improved insulin resistance and decreased beta cell dysfunction after sleeve gastrectomy might explain diabetes remission associated with metabolic surgery.


2019 ◽  
Vol 25 (23) ◽  
pp. 2602-2606 ◽  
Author(s):  
Shahzad Khan ◽  
Mohammad A. Kamal

: Insulin resistance and type 2 Diabetes mellitus resulting in chronic hyperglycemia is a major health problem in the modern world. Many drugs have been tested to control hyperglycemia which is believed to be the main factor behind many of the diabetes-related late-term complications. Wogonin is a famous herbal medicine which has been shown to be effective in controlling diabetes and its complications. In our previous work, we showed that wogonin is beneficial in many ways in controlling diabetic cardiomyopathy. In this review, we mainly explained wogonin anti-hyperglycemic property through AKT/GLUT4 pathway. Here we briefly discussed that wogonin increases Glut4 trafficking to plasma membrane which allows increased entry of glucose and thus alleviates hyperglycemia. Conclusion: Wogonin can be used as an anti-diabetic and anti-hyperglycemic drug and works via AKT/GLUT4 pathway.


Author(s):  
Froylan David Martínez-Sánchez ◽  
Valerie Paola Vargas-Abonce ◽  
Andrea Rocha-Haro ◽  
Romina Flores-Cardenas ◽  
Milagros Fernández-Barrio ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1236
Author(s):  
Jesús Burillo ◽  
Patricia Marqués ◽  
Beatriz Jiménez ◽  
Carlos González-Blanco ◽  
Manuel Benito ◽  
...  

Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-52
Author(s):  
A.P. Shumilov ◽  
◽  
M.Yu. Semchenkova ◽  
D.S. Mikhalik ◽  
T.G. Avdeeva ◽  
...  

Vitamin D plays an important role in decreasing the risk of developing type 2 diabetes by influencing calcium metabolism, thereby reducing β-cell dysfunction and preventing insulin resistance. The findings of research works are contradictory enough, although some of them demonstrated an inverse relationship between vitamin D levels and the incidence of type 2 diabetes. The article describes the biological mechanisms of relationships between vitamin D levels and type 2 diabetes, reviews the results of the studies conducted and summarizes the available data. Key words: vitamin D, type 2 diabetes mellitus, insulin resistance


2007 ◽  
Vol 292 (6) ◽  
pp. E1694-E1701 ◽  
Author(s):  
Jane J. Kim ◽  
Yoshiaki Kido ◽  
Philipp E. Scherer ◽  
Morris F. White ◽  
Domenico Accili

Type 2 diabetes results from impaired insulin action and β-cell dysfunction. There are at least two components to β-cell dysfunction: impaired insulin secretion and decreased β-cell mass. To analyze how these two variables contribute to the progressive deterioration of metabolic control seen in diabetes, we asked whether mice with impaired β-cell growth due to Irs2 ablation would be able to mount a compensatory response in the background of insulin resistance caused by Insr haploinsufficiency. As previously reported, ∼70% of mice with combined Insr and Irs2 mutations developed diabetes as a consequence of markedly decreased β-cell mass. In the initial phases of the disease, we observed a robust increase in circulating insulin levels, even as β-cell mass gradually declined, indicating that replication-defective β-cells compensate for insulin resistance by increasing insulin secretion. These data provide further evidence for a heterogeneous β-cell response to insulin resistance, in which compensation can be temporarily achieved by increasing function when mass is limited. The eventual failure of compensatory insulin secretion suggests that a comprehensive treatment of β-cell dysfunction in type 2 diabetes should positively affect both aspects of β-cell physiology.


2021 ◽  
Author(s):  
TAKUMI KITAMOTO ◽  
Taiyi Kuo ◽  
Atsushi Okabe ◽  
Atsushi Kaneda ◽  
Domenico Accili

Abnormalities of lipid/lipoprotein and glucose metabolism are hallmarks of hepatic insulin resistance in type 2 diabetes. The former antedate the latter, but the latter become progressively refractory to treatment and contribute to therapeutic failures. It's unclear whether the two processes share a common pathogenesis and what underlies their progressive nature. In this study, we investigated the hypothesis that genes in the lipid/lipoprotein pathway and those in the glucose metabolic pathway are governed by different transcriptional logics that affect their response to physiologic (fasting/refeeding) as well as pathophysiologic cues (insulin resistance and hyperglycemia). To this end, we obtained genomic and transcriptomic maps of the key insulin-regulated transcription factor, FoxO1, and integrated them with those of CREB, PPARα, and glucocorticoid receptor. We found an enrichment of glucose metabolic genes among those regulated by intergenic and promoter enhancers in a fasting-dependent manner, while lipid genes were enriched among fasting-dependent intron enhancers and fasting-independent enhancer-less introns. Glucose genes also showed a remarkable transcriptional resiliency, i.e., an enrichment of active marks at shared PPARα/FoxO1 regulatory elements when FoxO1 was inactivated. Surprisingly, the main features associated with insulin resistance and hyperglycemia were a ″spreading″ of FoxO1 binding to enhancers, and the emergence of target sites unique to this condition. We surmise that this unusual pattern correlates with the progressively intractable nature of hepatic insulin resistance. This transcriptional logic provides an integrated model to interpret the combined lipid and glucose abnormalities of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document