scholarly journals Endothelial response to glucose: dysfunction, metabolism, and transport

Author(s):  
Alisa Morss Clyne

The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yukio Shimasaki ◽  
Kai Chen ◽  
John F Keaney

Background: Growing evidence suggests that mitochondrial function contributes to cell phenotype. One important component of mitochondrial function is the membrane potential that is controlled, in part, by uncoupling proteins (UCPs). Based on our previous data, the UCP2 is predominantly expressed in cultured endothelial cells. Therefore, we sought to examine the role of UCP2 in endothelial cell growth and angiogenesis. Methods and Results: Murine lung endothelial cells (MLECs) were isolated from UCP2-null and wild-type mice. UCP2-null cells were found less proliferative than wild-type cells (P<0.02, UCP2-null cells vs. wild-type cells, n=4). This defect of UCP2-null cells was rescued by UCP2 adenovirus transfection (19% increase, p<0.02 vs. LacZ adenovirus treated cells, n=3), and also rescued by transfection with manganese superoxide dismutase (MnSOD) adenovirus (53% increase, P<0.002 vs. LacZ adenovirus treated cells, n=3). We found a reciprocal relation such as no UCP2 expression and higher mitochondrial superoxide level in the MLECs (P<0.005, UCP2-null cells vs. wild-type cells, n=3), suggesting that mitochondrial superoxide may regulate endothelial cell growth. Then, we prepared murine aortic rings from UCP2-null and wild-type mice and embedded in rat tail collagen gel. The sprouting angiogenesis of UCP2-null explants was significantly less than wild-type explants (P<0.02, UCP2-null explants vs. wild-type explants, n=3– 4). Furthermore, MLECs from MnSOD-heterozygous mice showed less proliferation with lower expression of UCP2 protein and higher mitochondrial superoxide level compared to the MLECs from wild-type littermates (P<0.02, MnSOD-heterozygous cells vs. wild-type cells, n=4 – 8). We also observed less sprouting angiogenesis in MnSOD-heterozygous aortic explants than wild-type aortic explants (P<0.05, MnSOD-heterozygous explants vs. wild-type explants, n=3– 6). Conclusions: These data indicate that mitochondrial superoxide controls endothelial cell proliferation and angiogenesis, suggesting that mitochondrial metabolism modulates the endothelial cell growth and angiogenesis.


2001 ◽  
Vol 281 (4) ◽  
pp. L993-L1000 ◽  
Author(s):  
Chun Song ◽  
Abu B. Al-Mehdi ◽  
Aron B. Fisher

Abrupt cessation of lung perfusion induces a rapid endothelial response that is not associated with anoxia but reflects loss of normal shear stress. This response includes membrane depolarization, H2O2generation, and increased intracellular Ca2+. We evaluated these parameters immediately upon nonhypoxic ischemia using fluorescence videomicroscopy to image in situ endothelial cells in isolated, ventilated rat lungs. Lungs labeled with 4-{2-[6-(dioctylamino)-2-naphthalenyl]ethenyl}1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS; a membrane potential probe), Amplex Red (an extracellular H2O2probe), or fluo 3-AM (a Ca2+indicator) were subjected to control perfusion followed by global ischemia. Endothelial di-8-ANEPPS fluorescence increased significantly within the first second of ischemia and stabilized at 15 s, indicating membrane depolarization by ∼17 mV; depolarization was blocked by preperfusion with the K+channel agonist lemakalim. Increased H2O2, inhibitable by catalase, was detected in the vascular space at 1–2 s after the onset of ischemia. Increased intracellular Ca2+was detected 10–15 s after the onset of ischemia; the initial increase was inhibited by preperfusion with thapsigargin. Thus the temporal sequence of the initial response of endothelial cells in situ to loss of shear stress (i.e., ischemia) is as follows: membrane depolarization, H2O2release, and increased intracellular Ca2+.


2019 ◽  
Vol 39 (02) ◽  
pp. 128-139 ◽  
Author(s):  
Magdalena L. Bochenek ◽  
Katrin Schäfer

AbstractHaemostasis encompasses a set of strictly regulated actions, such as vasoconstriction, platelet activation and blood coagulation. Endothelial cells play a crucial role in all of these processes and are an integral part of the vascular response to injury resulting in thrombus formation. Healthy endothelium expresses mediators to prevent platelet activation, including prostacyclin and nitric oxide, and to inhibit coagulation, such as thrombomodulin or RNase1. Upon activation, endothelial cells expose von Willebrand factor, integrins and other receptors to interact with activated platelets, erythrocytes and coagulation factors, respectively, resulting in blood clot formation. The endothelial cell response to cytokines and growth factors released from activated platelets and immune cells abundantly present in arterial and venous thrombi also plays an important role for thrombus resolution, whereas failure to completely resolve thrombi may initiate fibrotic remodelling and chronic vascular occlusion both in the arterial and venous tree. Therefore, endothelial cells are increasingly recognized as potential target to prevent thrombotic events and to accelerate thrombus resolution. Here, we discuss recent publications from our group in the context of other studies on the role of the endothelium during acute and chronic thrombotic events.


2009 ◽  
Vol 30 (3) ◽  
pp. 545-554 ◽  
Author(s):  
Jiabin Guo ◽  
Diana N Krause ◽  
James Horne ◽  
John H Weiss ◽  
Xuejun Li ◽  
...  

Protective effects of estrogen against experimental stroke and neuronal ischemic insult are well-documented, but it is not known whether estrogen prevents ischemic injury to brain endothelium, a key component of the neurovascular unit. Increasing evidence indicates that estrogen exerts protective effects through mitochondrial mechanisms. We previously found 17β-estradiol (E2) to improve mitochondrial efficiency and reduce mitochondrial superoxide in brain blood vessels and endothelial cells. Thus we hypothesized E2 will preserve mitochondrial function and protect brain endothelial cells against ischemic damage. To test this, an in vitro ischemic model, oxygen-glucose deprivation (OGD)/reperfusion, was applied to immortalized mouse brain endothelial cells (bEnd.3). OGD/reperfusion-induced cell death was prevented by long-term (24, 48 h), but not short-term (0.5, 12 h), pretreatment with 10 nmol/L E2. Protective effects of E2 on endothelial cell viability were mimicked by an estrogen-receptor (ER) agonist selective for ERα (PPT), but not by one selective for ERβ (DPN). In addition, E2 significantly decreased mitochondrial superoxide and preserved mitochondrial membrane potential and ATP levels in early stages of OGD/reperfusion. All of the E2 effects were blocked by the ER antagonist, ICI-182,780. These findings indicate that E2 can preserve endothelial mitochondrial function and provide protection against ischemic injury through ER-mediated mechanisms.


2001 ◽  
Vol 360 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Stephane C. BOUTET ◽  
Thomas QUERTERMOUS ◽  
Bahaa M. FADEL

TIE1, an endothelial-cell-specific tyrosine kinase receptor, is required for the survival and growth of microvascular endothelial cells during the capillary sprouting phase of vascular development. To investigate the molecular mechanisms that regulate the expression of TIE1 in the endothelium, we analysed transgenic mouse embryos carrying wild-type or mutant TIE1 promoter/LacZ constructs. Our data indicate that an upstream DNA octamer element (5′-ATGCAAAT-3′) is required for the in vivo expression of TIE1 in embryonic endothelial cells. Transgenic embryos carrying the wild-type TIE1 promoter (−466 to +78bp) fused to LacZ and spanning the octamer element demonstrate endothelial-cell-specific expression of the reporter transgene. Point mutations introduced within the octamer element result in a significant decrease of endothelial LacZ expression, suggesting that the octamer site functions as a positive regulator for TIE1 gene expression in endothelial cells. DNA–protein binding studies show that the octamer element exhibits an endothelial-cell-specific pattern of binding via interaction with endothelial-cell-restricted factor(s). Our findings suggest an important role for the octamer element in regulating the expression of the TIE1 receptor in the embryonic endothelium and suggest a common mechanism for the regulation of the angiogenic and cell-specific TIE1 and TIE2 genes during vascular development.


2012 ◽  
Vol 112 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Kal E. Watson ◽  
William F. Dovi ◽  
Robert L. Conhaim

Vasoconstrictors cause contraction of pulmonary microvascular endothelial cells in culture. We wondered if this meant that contraction of these cells in situ caused active control of microvascular perfusion. If true, it would mean that pulmonary microvessels were not simply passive tubes and that control of pulmonary microvascular perfusion was not mainly due to the contraction and dilation of arterioles. To test this idea, we vasoconstricted isolated perfused rat lungs with angiotensin II, bradykinin, serotonin, or U46619 (a thromboxane analog) at concentrations that produced equal flows. We also perfused matched-flow controls. We then infused a bolus of 3 μm diameter particles into each lung and measured the rate of appearance of the particles in the venous effluent. We also measured microscopic trapping patterns of particles retained within each lung. Thirty seconds after particle infusion, venous particle concentrations were significantly lower ( P ≤ 0.05) for lungs perfused with angiotensin II or bradykinin than for those perfused with U46619, but not significantly different from serotonin perfused lungs or matched flow controls. Microscopic clustering of particles retained within the lungs was significantly greater ( P ≤ 0.05) for lungs perfused with angiotensin II, bradykinin, or serotonin, than for lungs perfused with U46619 or for matched flow controls. Our results suggest that these agents did not produce vasoconstriction by a common mechanism and support the idea that pulmonary microvessels possess a level of active control and are not simply passive exchange vessels.


1993 ◽  
Vol 265 (1) ◽  
pp. H74-H82 ◽  
Author(s):  
P. He ◽  
F. E. Curry

Albumin is required in vascular perfusates to maintain the normal permeability of microvessel walls. The most common mechanism proposed for action of albumin involves binding to the endothelial cell surface to increase the resistance to water and solute flows through hydraulic pathways across the capillary wall. The results of the present experiments do not conform to this simple adsorption model. Ringer perfusion increased the hydraulic conductivity (Lp) of the wall of single perfused frog mesenteric microvessels by 4.0 +/- 0.5-fold. The increase in Lp was associated with an increase of cytoplasmic calcium concentration ([Ca2+]i) from 59 +/- 5 nM when albumin was in the perfusate to a transient peak of 181 +/- 13 nM, 1–2 min after Ringer perfusion. [Ca2+]i then fell back to close to 100 nM. Processes that reduced Ca2+ influx into endothelial cells (removal of extracellular Ca2+, membrane depolarization) reduced Ca2+ influx and attenuated the increase in [Ca2+]i. The same processes abolished the increase in Lp after Ringer perfusion and restored Lp to close to control values during Ringer perfusion. Thus Ca2+ entry into endothelial cells is required to initiate and maintain the increased permeability during Ringer perfusion.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiuli Wang ◽  
Yi Wang ◽  
Lulu Zhang ◽  
Da Zhang ◽  
Lu Bai ◽  
...  

The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4583-4591 ◽  
Author(s):  
Heinz Läubli ◽  
Katharina-Susanne Spanaus ◽  
Lubor Borsig

Abstract Hematogenous metastasis is promoted by interactions of tumor cells with leukocytes, platelets, and the endothelium in the local intravascular microenvironment. Here we show that the activation of the microvascular endothelium results in recruitment of monocytes to metastatic tumor cells and promotes the establishment of the metastatic microenvironment. This inflammatory-like endothelial response was observed in microvascular endothelial cells only. Microarray analysis of microvascular endothelial cells cocultured with tumor cells in the presence of leukocytes and platelets revealed a specific gene expression profile. Selectin-mediated interactions of tumor cells with platelets and leukocytes activated endothelial cells and induced production of C-C chemokine ligand 5 (CCL5). Inhibition of CCL5-dependent monocyte recruitment during the early phase of metastasis by a CCL5 receptor antagonist strongly reduced tumor cell survival and attenuated metastasis. Collectively, these findings demonstrate that the endothelial expression of CCL5 contributes to the formation of a permissive metastatic microenvironment.


2007 ◽  
Vol 362 (1484) ◽  
pp. 1445-1457 ◽  
Author(s):  
Jonathan T Butcher ◽  
Robert M Nerem

Endothelial cells are critical mediators of haemodynamic forces and as such are important foci for initiation of vascular pathology. Valvular leaflets are also lined with endothelial cells, though a similar role in mechanosensing has not been demonstrated. Recent evidence has shown that valvular endothelial cells respond morphologically to shear stress, and several studies have implicated valvular endothelial dysfunction in the pathogenesis of disease. This review seeks to combine what is known about vascular and valvular haemodynamics, endothelial response to mechanical stimuli and the pathogenesis of valvular diseases to form a hypothesis as to how mechanical stimuli can initiate valvular endothelial dysfunction and disease progression. From this analysis, it appears that inflow surface-related bacterial/thrombotic vegetative endocarditis is a high shear-driven endothelial denudation phenomenon, while the outflow surface with its related calcific/atherosclerotic degeneration is a low/oscillatory shear-driven endothelial activation phenomenon. Further understanding of these mechanisms may help lead to earlier diagnostic tools and therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document