Infused salbutamol accentuates acid-induced lung injury in the rat

1986 ◽  
Vol 71 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Stanley Braude ◽  
David Royston

1. The effect in the rat of salbutamol infusion (1 μg min−1 kg−1) on acid-induced lung injury has been determined. Severity of lung injury was assessed by two techniques: the pulmonary clearance of 99mTc-diethylenetriaminepenta-acetate (99mTc-DTPA) and the lung wet/dry weight ratio, giving indices of alveolar epithelial permeability and transendothelial water filtration respectively. 2. Mean half-time of clearance of 99mTc-DTPA was increased significantly in rats who had intratracheal acid-induced injury and control (saline) intravenous infusion (19.4 ± 2.6 min) compared with non-acid-treated rats (98.1 ± 7.2) (P < 0.0001). However, those animals who had intratracheal acid injury and subsequent salbutamol intravenous infusion had significantly faster clearance (11.5 ± 1.9) than the acid and control infusion group (P < 0.05). 3. Gravimetric lung water in the acid-only rats (expressed as wet/dry weight ratio) was increased significantly (6.4 ± 0.3) compared with the non-acid-treated controls (5.4 ± 0.2) (P < 0.01). Acid-treated rats who had salbutamol infused had dramatically increased lung water (10.0 ± 0.6) (P < 0.001 vs acid and control infusion). 4. Intravenous salbutamol infusion itself produced no significant difference in the results for both techniques, compared with the non-acid-treated time-course controls. 5. Infused salbutamol accentuates acid-induced lung injury in the rat. Possible factors responsible for these findings include β2-adrenergic agonist mediated inhibition of hypoxic pulmonary vasoconstriction (HPV) and a predominant β1-adrenergic agonist inotropic effect of salbutamol with resultant rise in pulmonary artery pressure.

1995 ◽  
Vol 78 (5) ◽  
pp. 1635-1641 ◽  
Author(s):  
S. Tasaka ◽  
A. Ishizaka ◽  
T. Urano ◽  
K. Sayama ◽  
F. Sakamaki ◽  
...  

Hyperoxic lung injury is attributable to oxygen radicals produced under hyperoxic conditions. The 21-aminosteroid (AS), U-74389G, is a potent antioxidant. We examined the effect of U-74389G on lung injury in guinea pigs during exposure to 90% O2 for 48 h. We injected either vehicle or 10 mg/kg of U-74389G 30 min before the O2 exposure and injected the same dose 12, 24, and 36 h later. We performed two series of experiments after exposure. In the first series, we measured the clearance rate of 99mTc-labeled dialdehyde starch (DAS) from the lungs as an index of pulmonary epithelial damage in three experimental groups consisting of 1) control (n = 6) O2 alone (n = 6), and 3) O2 + AS (n = 6). In the second series, pulmonary endothelial injury was estimated by using 28 guinea pigs divided into four experimental groups consisting of 1) control (n = 8), 2) AS alone (n = 5), 3) O2 alone (n = 6), and 4) O2 + AS (n = 9). In the second series, we measured the wet-to-dry weight ratio (W/D) as an index of lung water and the concentration ratio of 125I-labeled albumin in lung tissue and bronchoalveolar lavage (BAL) fluid compared with plasma (T/P and BAL/P, respectively) as indexes of pulmonary endothelial damage. Cell accumulation in BAL fluid and lung tissue samples was also assessed in the second series.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 287 (2) ◽  
pp. L402-L410 ◽  
Author(s):  
Kiyoyasu Kurahashi ◽  
Shuhei Ota ◽  
Kyota Nakamura ◽  
Yoji Nagashima ◽  
Takuya Yazawa ◽  
...  

Pneumonia caused by Pseudomonas aeruginosa carries a high rate of morbidity and mortality. A lung-protective strategy using low tidal volume (VT) ventilation for acute lung injury improves patient outcomes. The goal of this study was to determine whether low VTventilation has similar utility in severe P. aeruginosa infection. A cytotoxic P. aeruginosa strain, PA103, was instilled into the left lung of rats anesthetized with pentobarbital. The lung-protective effect of low VT(6 ml/kg) with or without high positive end-expiratory pressure (PEEP, 10 or 3 cmH2O) was then compared with high VTwith low PEEP ventilation (VT12 ml/kg, PEEP 3 cmH2O). Severe lung injury and septic shock was induced. Although ventilatory mode had little effect on the involved lung or septic physiology, injury to noninvolved regions was attenuated by low VTventilation as indicated by the wet-to-dry weight ratio (W/D; 6.13 ± 0.78 vs. 3.78 ± 0.26, respectively) and confirmed by histopathological examinations. High PEEP did not yield a significant protective effect (W/D, 4.03 ± 0.32) but, rather, caused overdistension of noninvolved lungs. Bronchoalveolar lavage revealed higher concentrations of TNF-α in the fluid of noninvolved lung undergoing high VTventilation compared with those animals receiving low VT. We conclude that low VTventilation is protective in noninvolved regions and that the application of high PEEP attenuated the beneficial effects of low VTventilation, at least short term. Furthermore, low VTventilation cannot protect the involved lung, and high PEEP did not significantly alter lung injury over a short time course.


1987 ◽  
Vol 62 (2) ◽  
pp. 491-496 ◽  
Author(s):  
B. D. Minty ◽  
C. M. Scudder ◽  
C. J. Grantham ◽  
J. G. Jones ◽  
Y. S. Bakhle

Lung injury and pulmonary edema were induced in rats after intraperitoneal injection of 10 mg/kg alpha-naphthylthiourea (ANTU). The time course of development of lung injury was assessed by the clearance of 99mTc-diethylenetriamine pentaacetate (99mTcDTPA) from the lung into the blood, the pharmacokinetics of tritiated prostaglandin E2 [( 3H]PGE2) in the isolated perfused lung, and by increase in the weight ratio (wet-to-dry) of lung. Two hours after ANTU administration, the clearance of 99mTcDTPA was significantly faster than in untreated animals and implied an increase in permeability of the alveolar-capillary barrier. This change preceded the increase in wet-to-dry weight ratio of lung, which was not significant until 5 h after ANTU administration. The pharmacokinetics of [3H]PGE2 were significantly altered after ANTU and these changes persisted beyond the time when both lung weight ratio and 99mTcDTPA clearance had recovered to normal values. We conclude that both 99mTcDTPA clearance and PGE2 pharmacokinetics change in ANTU-induced lung injury but with different time courses. In the progressive phase of lung injury due to ANTU, the early change in clearance of 99mTcDTPA suggests that an increased permeation of the alveolar capillary barrier by this small molecule precedes pulmonary edema due to an increased colloid permeability of the barrier. Abnormal metabolism in the pulmonary microvasculature persists when the permeability defect and edema have recovered.


2021 ◽  
Vol 22 (11) ◽  
pp. 5533
Author(s):  
Alessio Filippo Peritore ◽  
Ramona D’Amico ◽  
Rosalba Siracusa ◽  
Marika Cordaro ◽  
Roberta Fusco ◽  
...  

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


1981 ◽  
Vol 50 (1) ◽  
pp. 102-106 ◽  
Author(s):  
P. S. Barie ◽  
T. S. Hakim ◽  
A. B. Malik

We determined the effect of pulmonary hypoperfusion on extravascular water accumulation in anesthetized dogs by occluding the left pulmonary artery for 3 h and then reperfusing it for 24 h. The lung was reperfused either at normal left atrial pressure (Pla) or during increased Pla induced by a left atrial balloon. In each case the extravascular water content-to-bloodless dry weight ratio (W/D) of the left lung was compared with that of the right lung. The W/D of the left lung of 3.26 +/- 0.49 ml/g was not significantly different from the value of 2.87 +/- 0.37 for the right lung after the reperfusion at normal Pla. However, the W/D of the left lung of 5.10 +/- 0.38 ml/g was greater (P less than 0.05) than the value of 4.42 +/- 0.34 for the right lung after reperfusion at Pla of 25 Torr. This difference could not be prevented by pretreatment with heparin, suggesting that the increase in lung water content was not due to activation of intravascular coagulation secondary to stasis occurring during the occlusion. Because the left lung was more edematous than the right one, even though both lungs had been subjected to the same increase in Pla, the results suggest that a period of pulmonary hypoperfusion causes an increase in the interstitial protein concentration.


2008 ◽  
Vol 52 (No. 3) ◽  
pp. 121-129
Author(s):  
D. Kosakova ◽  
P. Scheer ◽  
J. Lata ◽  
J. Doubek

The aim of the study was evaluate the influence of the probiotic <i>Escherichia coli</i> Nissle 1917 strain (Mutaflor&reg; suspension, Ardeypharm GmbH, Herdecke, Germany) on bacterial translocation in cases of liver damage, damage to the intestinal mucosa, potential portal hypertension associated with possible development of oesophageal varices and on the bacterial population of the intestine during chronic experimental liver damage in the laboratory rat. Rats with liver damage induced by thioacetamide were divided into an experimental and control group. Experimental and control animals were applied Mutaflor and saline, respectively. Samples of blood, liver, lymph nodes and caecum for microbiological examination, of liver, duodenum and oesophagus for histological examination and of spleen for weight evaluation were collected. There were no significant differences between both groups of animals in the qualitative proportion of <i>Staphylococcus</i> spp., <i>Enterococcus</i> spp. and <i>Proteus</i> spp. cultured from the lymph nodes, blood and liver. The quantitative culture results on <i>Enterococcus</i> spp. in the caecum, liver and lymph nodes showed no significant differences between both groups. There was a significant difference between the experimental and control group in the counts of coliform bacteria. No significant differences between both groups were found in the overall damage score of the liver, duodenum and oesophagus. There were no differences in the spleen to body weight ratio of both groups. The application of Mutaflor&reg; suspension for eight days had no recognisable effect diminishing the selected complications of chronic liver damage caused by the administration of TAA to laboratory rats.


2006 ◽  
Vol 291 (4) ◽  
pp. L580-L587 ◽  
Author(s):  
Je Hyeong Kim ◽  
Min Hyun Suk ◽  
Dae Wui Yoon ◽  
Seung Heon Lee ◽  
Gyu Young Hur ◽  
...  

Neutrophils are considered to play a central role in ventilator-induced lung injury (VILI). However, the pulmonary consequences of neutrophil accumulation have not been fully elucidated. Matrix metalloproteinase-9 (MMP-9) had been postulated to participate in neutrophil transmigration. The purpose of this study was to investigate the role of MMP-9 in the neutrophilic inflammation of VILI. Male Sprague-Dawley rats were divided into three groups: 1) low tidal volume (LVT), 7 ml/kg of tidal volume (VT); 2) high tidal volume (HVT), 30 ml/kg of VT; and 3) HVT with MMP inhibitor (HVT+MMPI). As a MMPI, CMT-3 was administered daily from 3 days before mechanical ventilation. Degree of VILI was assessed by wet-to-dry weight ratio and acute lung injury (ALI) scores. Neutrophilic inflammation was determined from the neutrophil count in the lung tissue and myeloperoxidase (MPO) activity in the bronchoalveolar lavage fluid (BALF). MMP-9 expression and activity were examined by immunohistochemical staining and gelatinase zymography, respectively. The wet-to-dry weight ratio, ALI score, neutrophil infiltration, and MPO activity were increased significantly in the HVT group. However, in the HVT+MMPI group, pretreatment with MMPI decreased significantly the degree of VILI, as well as neutrophil infiltration and MPO activity. These changes correlated significantly with MMP-9 immunoreactivity and MMP-9 activity. Most outcomes were significantly worse in the HVT+MMPI group compared with the LVT group. In conclusion, VILI mediated by neutrophilic inflammation is closely related to MMP-9 expression and activity. The inhibition of MMP-9 protects against the development of VILI through the downregulation of neutrophil-mediated inflammation.


2006 ◽  
Vol 34 (04) ◽  
pp. 613-621 ◽  
Author(s):  
Yanning Qian ◽  
Jie Sun ◽  
Zhongyun Wang ◽  
Jianjun Yang

Sepsis is associated with the highest risk of progression to acute lung injury or acute respiratory distress syndrome. Shen-Fu has been advocated to treat many severely ill patients. Our study was designed to investigate the effect of Shen-Fu on endotoxin-induced acute lung injury in vivo. Adult male Wistar rats were randomly divided into 6 groups: controls; those challenged with endotoxin (5 mg/kg) and treated with saline; those challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (1 mg/kg); those challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (10 mg/kg); increase challenged with endotoxin (5 mg/kg) and treated with Shen-Fu (100 mg/kg); saline injected and treated with Shen-Fu (100 mg/kg). TNF-α, IL-6, and NF-kappa B were investigated in the lung two hours later. Myeloperoxidase (MPO) activity and wet/dry weight ratio were investigated six hours later. Intravenous administration of endotoxin provoked significant lung injury, which was characterized by increment increase of MPO activity and wet/dry lung weight ratio, and TNF-α and IL-6 expression and NF-kappa B activation. Shen-Fu (10,100 mg/kg) decreased MPO activity and wet/dry weight ratio and inhibited TNF-α and IL-6 production, endotoxin-induced NF-kappa B activation. Our results indicated that Shen-Fu at a dose of higher than 10 mg/kg inhibited endotoxin-induced pulmonary inflammation in vivo.


1986 ◽  
Vol 61 (6) ◽  
pp. 2156-2161 ◽  
Author(s):  
A. B. Gorin ◽  
G. Mendiondo

We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.


1999 ◽  
Vol 87 (6) ◽  
pp. 2319-2325 ◽  
Author(s):  
Masashi Kishi ◽  
Lois F. Richard ◽  
Robert O. Webster ◽  
Thomas E. Dahms

Reactive oxygen species have been shown to play an important role in the pathogenesis of lung injury. This study was designed to clarify the role of intrapulmonary neutrophils in the development of xanthine/xanthine oxidase (X/XO)-induced lung injury in isolated buffer-perfused rabbit lungs. We measured microvascular fluid filtration coefficient ( K f) and wet-to-dry weight ratio to assess lung injury. X/XO induced a significant increase in K f and wet-to-dry weight ratio in neutrophil-replete lungs, whereas the lung injury was attenuated in neutrophil-depleted lungs. A neutrophil elastase inhibitor, ONO-5046, also attenuated the lung injury. In addition, X/XO induced a transient pulmonary arterial pressure (Ppa) increase. The thromboxane inhibitor OKY-046 attenuated the Ppa increase but did not alter the increase in permeability. Neutrophil depletion reduced the K f increase but had no effect on the Ppa increase. These results suggest that intrapulmonary neutrophils activated by X/XO play a major role in development of the lung injury, that neutrophil elastase is involved in the injury, and that the X/XO-induced vasoconstriction is independent of intrapulmonary neutrophils.


Sign in / Sign up

Export Citation Format

Share Document