Interleukin-18 deficiency protects against renal interstitial fibrosis in aldosterone/salt-treated mice

2016 ◽  
Vol 130 (19) ◽  
pp. 1727-1739 ◽  
Author(s):  
Akiko Tanino ◽  
Takafumi Okura ◽  
Tomoaki Nagao ◽  
Masayoshi Kukida ◽  
Zuowei Pei ◽  
...  

Interleukin (IL)-18 is a member of the IL-1 family of cytokines and was described originally as an interferon γ-inducing factor. Aldosterone plays a central role in the regulation of sodium and potassium homoeostasis by binding to the mineralocorticoid receptor and contributes to kidney and cardiovascular damage. Aldosterone has been reported to induce IL-18, resulting in cardiac fibrosis with induced IL-18-mediated osteopontin (OPN). We therefore hypothesized that aldosterone-induced renal fibrosis via OPN may be mediated by IL-18. To verify this hypothesis, we compared mice deficient in IL-18 and wild-type (WT) mice in a model of aldosterone/salt-induced hypertension. IL-18−/− and C57BL/6 WT mice were used for the uninephrectomized aldosterone/salt hypertensive model, whereas NRK-52E cells (rat kidney epithelial cells) were used in an in vitro model. In the present in vivo study, IL-18 protein expression was localized in medullary tubules in the WT mice, whereas in aldosterone-infused WT mice this expression was up-regulated markedly in the proximal tubules, especially in injured and dilated tubules. This renal damage caused by aldosterone was attenuated significantly by IL-18 knockout with down-regulation of OPN expression. In the present in vitro study, aldosterone directly induced IL-18 gene expression in renal tubular epithelial cells in a concentration- and time-dependent manner. These effects were inhibited completely by spironolactone. IL-18 may be a key mediator of aldosterone-induced renal fibrosis by inducing OPN, thereby exacerbating renal interstitial fibrosis. Inhibition of IL-18 may therefore provide a potential target for therapeutic intervention aimed at preventing the progression of renal injury.

2020 ◽  
Vol 48 (07) ◽  
pp. 1715-1729
Author(s):  
Yanhuan Feng ◽  
Fan Guo ◽  
Hongxia Mai ◽  
Jing Liu ◽  
Zijing Xia ◽  
...  

Pterostilbene (PTB) is a derivative of resveratrol present in grapes and blueberries. PTB is structurally similar to resveratrol, possessing properties such as being analgesic, anti-aging, antidiabetic, anti-inflammatory, anti-obesity, anti-oxidation, cholesterol-reductive, and neuroprotective. However, there have not been reports on the effect of PTB on macrophage-myofibroblast transition (MMT) induced fibrosis in kidney. In this study, we investigated the antifibrotic effects of PTB on the in vivo mouse unilateral ureteral obstruction (UUO) model and in vitro MMT cells. Kidneys subjected to UUO with PTB treatment were collected for the investigation of PTB mediating MMT derived renal interstitial fibrosis. We conducted kidney RNA-seq transcriptomes and TGF-[Formula: see text]1-induced bone marrow-derived macrophages assays to determine the mechanisms of PTB. We found that PTB treatment suppressed the interstitial fibrosis in UUO mice. PTB also attenuated the number of MMT cells in vivo and in vitro. The transcriptomic analysis showed that CXCL10 may play a central role in the process of PTB-treated renal fibrosis. The siRNA-mediated CXCL10 knockdown decreased the number of MMT cells in TGF-[Formula: see text]1-induced bone marrow-derived macrophages. Our results suggested that PTB attenuated renal interstitial fibrosis by mediating MMT by regulating transcriptional activity of CXCL10.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Yi Fang ◽  
Ting Xie ◽  
Ning Xue ◽  
Qing Kuang ◽  
Zheng Wei ◽  
...  

Redox imbalance plays an important role in the pathogenesis of CKD progression. Previously, we demonstrated that microRNA-382 (miR-382) contributed to TGF-β1-induced loss of epithelial polarity in human kidney epithelial cells, but its role in the development of renal tubulointerstitial fibrosis remains unknown. In this study, we found that with 7 days of unilateral ureteral obstruction (UUO) in mice, the abundance of miR-382 in the obstructed kidney was significantly increased. Meanwhile, the protein expression of heat shock protein 60 (HSPD1), a predicted target of miR-382, was reduced after 7 days of UUO. Expression of 3-nitrotyrosine (3-NT) was upregulated, but expression of thioredoxin (Trx) was downregulated. Anti-miR-382 treatment suppressed the upregulation of miR-382, attenuated renal interstitial fibrosis in the obstructed kidney, and reversed the downregulation of HSPD1/Trx and upregulation of 3-NT after UUO. Furthermore, in vitro study revealed that overexpression of HSPD1 significantly restored Trx expression and reversed TGF-β1-induced loss of E-cadherin, while in vivo study found that direct siRNA-mediated suppression of HSPD1 in the UUO kidney promoted oxidative stress despite miR-382 blockade. Our clinical data showed that upregulation of miR-382/3-NT and downregulation of HSPD1/Trx were also observed in IgA nephropathy patients with renal interstitial fibrosis. These data supported a novel mechanism in which miR-382 targets HSPD1 and contributes to the redox imbalance in the development of renal fibrosis.


RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5891-5896 ◽  
Author(s):  
Yanhuan Feng ◽  
Jun Xu ◽  
Fan Guo ◽  
Rongshuang Huang ◽  
Min Shi ◽  
...  

The novel small-molecule inhibitor of iNOS (SKLB023) hindered renal interstitial fibrosis in vivo and in vitro by interfering with TGF-β1/Smad3 signaling, highlighting that SKLB023 has potential in the therapeutic strategy for renal fibrosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yan-lin Li ◽  
Lin-na Liu ◽  
Lin Huang ◽  
Hai-wen An ◽  
Jian-lin Jian ◽  
...  

Objective. To investigate the efficacy of Niao Du Kang (NDK) mixture in renal fibrosis of rats and to explore the mechanism underlying the effect of NDK on renal fibrosis. Methods. Unilateral ureteral obstruction (UUO) was used to replicate a rat renal interstitial fibrosis model. The drug-administered groups were given 20 ml/kg (NDK-H), 10 ml/kg (NDK-M), and 5 ml/kg (NDK-L) NDK mixture once a day for 21 days beginning 48 hours after surgery. The 24-hour urine protein and serum creatinine (CR) levels in the sham group rats, UUO rats, and NDK mixture-treated rats were measured after the last administration. The pathological changes of rat kidney tissue were observed by HE staining. The degree of fibrosis was observed by Masson’s staining and scored. The expression levels of TGF-β, α-SMA mRNA, and mir-129-5p in kidney were detected by qRT-PCR. HK-2 cells were treated with 5 ng/ml TGF-β to induce HK-2 cell fibrosis. The expression levels of TGF-β, α-SMA mRNA, and mir-129-5p in HK-2 cells were detected by qRT-PCR. TargetScan predicted the target gene of mir-129-5p, HK-2 cells were transfected with mir-129-5p mimic, and an overexpressed mir-129-5p HK-2 cell model was constructed. qRT-PCR was used to detect the expression of PDPK1 mRNA. Western blot was used to detect the expression of PDPK1, AKT, and p-AKT in HK-2 cells induced by TGF-β and in UUO rats. Results. NDK mixture significantly reduced the 24-hour urine protein and CR levels of UUO rats. HE staining showed that the NDK mixture group exhibited a significantly reduced degree of renal interstitial fibrosis. NDK mixture also reduced the expression of TGF-β and α-SMA, and the middle-dose group showed a better therapeutic effect. In vitro studies showed that NDK mixture-containing serum increased the expression of mir-129-5p to reduce renal fibrosis. In addition, NDK mixture increased the expression of mir-129-5p in vivo. Further studies indicated that mir-129-5p could target PDPKl to reduce its expression. The NDK-containing serum group also exhibited reduced expression of PDPK1. Conclusion. NDK mixture can significantly improve renal function and improve renal fibrosis in UUO model rats. Furthermore, NDK mixture can inhibit the expression of PDPK1 by upregulating the expression of mir-129-5p and then inhibiting the PI3K/AKT pathway to improve renal fibrosis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Xiaoqin Zhang ◽  
Chen Yu

Abstract Background and Aims We studied the downstream and mechanism of β-arrestins signaling in renal fibrosis process and the role of lysyl oxidase (LOX) in the AT1R-β-arrestins pathway. Method The mechanism of β-arrestins signaling was studied in normal rat kidney tubule epithelial cells (NRK-52E) treated with SII in vitro. BAPN or placebo was administered during ischemia reperfusion (IR)-induced fibrosis progression. Collagen crosslinking and fibrosis progression were assessed histologically and biochemically. Results The mRNA and protein levels of β-arrestin-1 and β-arrestin-2 were significantly upregulated in renal fibrosis model both in vitro and in vivo. SII activated the ERK-STAT3 PY705 but not STAT3-Try727 in nucleus of NRK-52E cells, which effects were abolished when transfection of siRNA targeting β-arrestin-1 and β-arrestin-2 or pretreated with PD98059 (MEK inhibitor). LOX was strongly induced in fibrotic kidney and NRK-52E cells treated with SII. Active LOX significantly increased collagen crosslinking. In established IR-28d renal fibrosis, LOX inhibition promoted fibrosis reversal and with a 25% decrease insoluble collagen. Gene silencing of β-arrestin-1 + 2 or STAT3 apparently inhibited SII-induced LOX expression in vitro. Besides, chromatin immunoprecipitation (ChIP) assay clearly demonstrating the interaction between STAT3 and the LOX promoter, which indicated LOX is a direct target gene of SII-β-arrestins-STAT3 signaling. Conclusion The ERK/STAT3 was downstream of AT1R-β-arrestins, ERK entered the nucleus and activated STAT3-PY705. LOX mediates collagen crosslinking and fibrotic matrix stabilization during renal fibrosis via the AT1R-β-arrestins-ERK-STAT3-PY705 signaling. By blocking this profibrotic pathway, therapeutic LOX inhibition attenuates the fibrosis and suggesting target the LOX has significant potency for the treatment of patients with fibrotic kidney disorders.


2020 ◽  
Author(s):  
Mi-Gyoeng Gwon ◽  
Hyun-Jin An ◽  
Hyemin Gu ◽  
Young-Ah Kim ◽  
Sang Mi Han ◽  
...  

Abstract Background Renal fibrosis is a progressive and chronic process that influences kidneys with chronic kidney disease (CKD), irrespective of cause, leading to irreversible failure of renal function and end-stage kidney disease. Among the signaling related to renal fibrosis, transforming growth factor-β1 (TGF-β1) signaling is a major pathway that induces the activation of myofibroblasts and the production of extracellular matrix (ECM) molecules. Apamin, a component of bee venom (BV), has been studied in relation to various diseases. However, the effect of apamin on renal interstitial fibrosis has not been investigated. The aim of this study was to estimate the beneficial effect of apamin in unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-β1-induced renal fibroblast activation.Results This study revealed that obstructive kidney injury induced an inflammatory response, tubular atrophy, and ECM accumulation. However, apamin treatment suppressed the increased expression of fibrotic-related genes, including α-SMA, vimentin, and fibronectin. Administration of apamin also attenuated the renal tubular cells injury and tubular atrophy. In addition, apamin attenuated fibroblast activation, ECM synthesis, and inflammatory cytokines such as TNF-α, IL-1β and IL-6 by suppressing the TGF-β1-canonical and non-canonical signaling pathways.Conclusions This study shown that apamin inhibites UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibroblasts activation in vitro. Apamin inhibited the inflammatory response, tubular atrophy, ECM accumulation, fibroblast activation, and renal interstitial fibrosis through suppression of TGF-β1/Smad2/3 and STAT3 signaling pathways. These results suggest that apamin might be a potential therapeutic agent for renal fibrosis.


2019 ◽  
Vol 20 (5) ◽  
pp. 1103 ◽  
Author(s):  
Rui Li ◽  
Yujuan Guo ◽  
Yiming Zhang ◽  
Xue Zhang ◽  
Lingpeng Zhu ◽  
...  

Salidroside (Sal) is an active ingredient that is isolated from Rhodiola rosea, which has been reported to have anti-inflammatory activities and a renal protective effect. However, the role of Sal on renal fibrosis has not yet been elucidated. Here, the purpose of the current study is to test the protective effects of Sal against renal interstitial fibrosis (RIF), and to explore the underlying mechanisms using both in vivo and in vitro models. In this study, we establish the unilateral ureteric obstruction (UUO) or folic acid (FA)-induced mice renal interstitial fibrosis in vivo and the transforming growth factor (TGF)-β1-stimulated human proximal tubular epithelial cell (HK-2) model in vitro. The levels of kidney functional parameters and inflammatory cytokines in serum are examined. The degree of renal damage and fibrosis is determined by histological assessment. Immunohistochemistry and western blotting are used to determine the mechanisms of Sal against RIF. Our results show that treatment with Sal can ameliorate tubular injury and deposition of the extracellular matrix (ECM) components (including collagen Ш and collagen I). Furthermore, Sal administration significantly suppresses epithelial-mesenchymal transition (EMT), as evidenced by a decreased expression of α-SMA, vimentin, TGF-β1, snail, slug, and a largely restored expression of E-cadherin. Additionally, Sal also reduces the levels of serum biochemical markers (serum creatinine, Scr; blood urea nitrogen, BUN; and uric acid, UA) and decreases the release of inflammatory cytokines (IL-1β, IL-6, TNF-α). Further study revealed that the effect of Sal on renal interstitial fibrosis is associated with the lower expression of TLR4, p-IκBα, p-NF-κB and mitogen-activated protein kinases (MAPK), both in vivo and in vitro. In conclusion, Sal treatment improves kidney function, ameliorates the deposition of the ECM components and relieves the protein levels of EMT markers in mouse kidneys and HK-2 cells. Furthermore, Sal treatment significantly decreases the release of inflammatory cytokines and inhibits the TLR4/NF-κB and MAPK signaling pathways. Collectively, these results suggest that the administration of Sal could be a novel therapeutic strategy in treating renal fibrosis.


2021 ◽  
pp. 1-11
Author(s):  
Ting-Ting Liu ◽  
Ran Luo ◽  
Yi Yang ◽  
Yi-Chun Cheng ◽  
Dan Chang ◽  
...  

<b><i>Introduction:</i></b> Increasing evidence has demonstrated that loss of peritubular capillaries plays a critical role in renal interstitial fibrosis. Leucine-rich α2-glycoprotein-1 (LRG1) has been observed promoting angiogenesis in the ocular disease mouse model and myocardial infarction model. We aimed to explore the role of LRG1 in renal interstitial fibrosis. <b><i>Methods:</i></b> We analyzed the expression of LRG1 in the plasma and kidney of CKD patients by ELISA and immunohistochemistry. Relationships between the expression of LRG1 in plasma and kidney and renal fibrosis and inflammation were analyzed. Tube formation assay was used to detect the angiogenesis in the human umbilical vein endothelial cell lines (HUVECs). And real-time PCR was used to detect the mRNA expression of LRG1, inflammatory factors, renal tubular injury indicators, pro-fibrotic cytokines, and CD31. We examined the effects of genetic ablation of LRG1 on renal fibrosis induced by unilateral ureteral obstruction (UUO) mice model at day 7. <b><i>Results:</i></b> We demonstrated that the expression of LRG1 in renal tissues and plasma samples was upregulated in CKD patients. And the expression of LRG1 was elevated in human renal tubular epithelial cell line (HK-2) cells in response to the stimulation of TNF-α in vitro, and in kidney after UUO in vivo. The deficiency of the LRG1 gene aggravated renal fibrosis, inflammatory cells infiltration, and capillary rarefaction after UUO. In vitro, LRG1 promoted the tube formation of HUVEC cells. LRG1 inhibits fibronectin secretion induced by TGF-β1 in HK-2 and overexpression of LRG1 in HK-2 cells decreased fibronectin secretion. <b><i>Conclusion:</i></b> LRG1 may prevent renal fibrosis by inhibiting the secretion of inflammatory and pro-fibrotic cytokines and promoting angiogenesis.


2022 ◽  
Author(s):  
Zhuo-yue Song ◽  
Mengru Zhu ◽  
Jun Wu ◽  
Tian Yu ◽  
Yao Chen ◽  
...  

The effects of Cucumaria frondosa polysaccharides (CFP) on renal interstitial fibrosis via regulating phosphatidylinositol-3-hydroxykinase/protein kinase-B/Nuclear factor-κB (PI3K/AKT/NF-κB) signaling pathway were investigated in vivo and in vitro in this research. A...


Sign in / Sign up

Export Citation Format

Share Document