Enhancer DNA methylation: implications for gene regulation

2019 ◽  
Vol 63 (6) ◽  
pp. 707-715 ◽  
Author(s):  
Allegra Angeloni ◽  
Ozren Bogdanovic

Abstract DNA methylation involves the addition of a methyl group to the fifth carbon of the pyrimidine cytosine ring (5-methylcytosine, 5mC). 5mC is widespread in vertebrate genomes where it is predominantly found within CpG dinucleotides. In mammals, 5mC participates in long-term silencing processes such as X-chromosome inactivation, genomic imprinting, somatic silencing of germline genes, and silencing of repetitive DNA elements. The evidence for 5mC as a dynamic gene-regulatory mechanism is mostly limited to specific examples, and is far from being completely understood. Recent work from diverse model systems suggests that 5mC might not always act as a dominant repressive mechanism and that hypermethylated promoters and enhancers can be permissive to transcription in vivo and in vitro. In this review, we discuss the links between 5mC and enhancer activity, and evaluate the role of this biochemical mechanism in various biological contexts.

2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi215-vi216
Author(s):  
Melanie Schoof ◽  
Carolin Göbel ◽  
Dörthe Holdhof ◽  
Sina Al-Kershi ◽  
Ulrich Schüller

Abstract DNA methylation based classification of brain tumors has revealed a high heterogeneity between tumors and led to the description of multiple distinct subclasses. The increasing subdivision of tumors can help to understand molecular mechanisms of tumor development and to improve therapy if appropriate model systems for preclinical research are available. Multiple recent publications have described a subgroup of pediatric glioblastoma which is clearly separable from other pediatric and adult glioblastoma in its DNA methylation profile (GBM MYCN). Many cases in this group are driven by MYCN amplifications and harbor TP53 mutations. These tumors almost exclusively occur in children and were further described as highly aggressive with a median overall survival of only 14 months. In order to further investigate the biology and treatment options of these tumors, we generated hGFAP-cre::TP53 Fl/Fl ::lsl-MYCN mice. These mice carry a loss of TP53 and show aberrant MYCN expression in neural precursors of the central nervous system. The animals develop large forebrain tumors within the first 80 days of life with 100 % penetrance. These tumors resemble human GBM MYCN tumors histologically and are sensitive to AURKA and ATR inhibitors in vitro. We believe that further characterization of the model and in vivo treatment studies will pave the way to improve treatment of patients with these highly aggressive tumors.


1993 ◽  
Vol 264 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

In young rats fed a Mg(2+)-deficient diet for 3 wk, Mg2+ and K+ contents in soleus and extensor digitorum longus muscles were significantly reduced and closely correlated. In isolated soleus muscles, Mg2+ depletion induced an even more pronounced loss of K+, and Mg2+ and K+ contents were correlated over a wide range (r = 0.95, P < 0.001). Extracellular Mg2+ (0-1.2 mM) caused no change in total or ouabain-suppressible 86Rb influx. After long-term incubation in Ca(2+)-Mg(2+)-free buffer with EDTA and EGTA, cellular Mg2+ and K+ contents were reduced by 35 and 15%, respectively, without any reduction in ATP and total or ouabain-suppressible 86Rb influx. In Mg(2+)-depleted muscles 42K efflux was increased by up to 42%, and repletion with Mg2+ produced a graded decrease. We conclude that Mg2+ and K+ contents are closely correlated in muscles Mg2+ depleted in vivo or in vitro and that neither extracellular nor moderate intracellular Mg2+ depletion affects total or Na(+)-K+ pump-mediated K+ influx. The reduced K+ content may rather be related to increased K+ efflux from the muscles.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1397-1397
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Valérie Jalbert ◽  
Elisabeth Cramer Bordé ◽  
...  

Abstract TGF-β1 is a cytokine with pleiotropic effects. It has been considered that TGF-β1plays a major role on hematopoietic stem cells (HSC) based on in vitro experiment. Achieving in vivo experiments proved to be difficult because constitutive TGF-β1 knock-out (KO) in mice leads to lethality during the first 4 weeks of life from a wasting syndrome related to tissue infiltration by activated T cells and macrophages. For this reason, hematopoiesis of TGF-β1−/− mice has not been studied in details. In contrast the role of TGF-β1 has been recently extensively studied in conditional TGF-β type I receptor (TβRI) KO mice. No clear effect was observed on HSC functions, suggesting that TGF-β1 was not a key physiological regulator of hematopoiesis in the adult. However, these experiments have some limitations. They do not exclude a putative role for TGF-β1 during fetal hematopoiesis and they do not specifically address the role of TGF-β1 on hematopoiesis because KO of TGF-β receptor leads to signaling arrest for all TGF-βs. In addition, other receptors may be involved in TGF-β1 signaling. For these reasons, we have investigated the hematopoiesis of constitutive TGF-β1 KO mice with a mixed Sv129 × CF-1 genetic background allowing the birth of a high proportion of homozygotes. In 2 week-old neonate mice, we have shown a decrease of bone marrow (BM) and spleen progenitors and a decrease of immature progenitors colony forming unit of the spleen (CFU-s). Moreover this was associated with a loss in reconstitutive activity of TGF-β1−/− HSC from BM. However, although asymptomatic, these mice had an excess of activated lymphocytes and an augmentation of Sca-1 antigen on hematopoietic cells suggesting an excess of γ-interferon release. Thus we studied hematopoiesis of 7 to 10 days-old neonate mice, before phenotypic modification and inflammatory cytokine release. Similar results were observed with a decrease in the number of progenitors and in the proliferation of TGF-β1−/− BM cells along with an increased differentiation but without an augmentation in apoptosis. Moreoever, a loss of long term reconstitutive capacity of BM Lineage negative (Lin−) TGF-β1−/− cells along with a diminution of homing of TGF-β1−/− progenitors was found. These results demonstrate that TGF-β1 may play a major role on the HSC/Progenitor compartment in vivo and that this defect does not seem to be linked to the immune disease. To completely overpass the risk of the inflammatory syndrome, we analyzed hematopoiesis of fetal liver (FL) of TGF-β1−/− mice and still found a decrease in progenitors, a profound defect in the proliferative capacities, in long term reconstitutive activity and homing potential of primitive FL hematopoietic cells. Our results demonstrate that TGF-β1 plays an important role during hematopoietic embryonic development. Altogether these findings suggest that TGF-β1 is a potent positive regulator for the in vivo homeostasis of the HSC compartment.


2009 ◽  
Vol 2009 ◽  
pp. 30-30
Author(s):  
A Doeschl-Wilson ◽  
I Kyriazakis ◽  
L Galina-Pantoja

Porcine reproductive and respiratory syndrome (PRRS) is an endemic pig disease in most European countries, causing respiratory distress, fever and growth reductions in growing pigs and increased litter mortality in sows. The disease is characterised by exceptionally long-term viral persistence within the host, a weak innate host immune response and delayed adaptive host immune response, and large between animal variation in the immune response (Murtaugh et al., 2004). Although numerous in-vitro and in-vivo studies produced valid insight into the fine details of the virus dynamics and its interaction with the host’s immune response, several fundamental questions concerning the role of diverse immune components and host genetics remain unanswered. In this study mathematical models were developed to investigate the role of diverse processes caused by the virus or the immune response on the infection characteristics.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anichavezhi Devendran ◽  
Rasheed Bailey ◽  
Sumanta Kar ◽  
Francesca Stillitano ◽  
Irene Turnbull ◽  
...  

Background: Heart failure (HF) is a complex clinical condition associated with substantial morbidity and mortality worldwide. The contractile dysfunction and arrhythmogenesis related to HF has been linked to the remodelling of calcium (Ca ++ ) handling. Phospholamban (PLN) has emerged as a key regulator of intracellular Ca ++ concentration. Of the PLN mutations, L39X is intriguing as it has not been fully characterized. This mutation is believed to be functionally equivalent to PLN null (KO) but contrary to PLN KO mice, L39X carriers develop a lethal cardiomyopathy (CMP). Our study aims at using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from homozygous L39X carriers to elucidate the role of L39X in human pathophysiology. Our plan also involves the characterization of humanized L39X knock-in mice (KM), which we hypothesize will develop a CMP from mis-localization of PLN and disruption of Ca ++ signalling. Methodology and Results: Mononuclear cells from Hom L39X carriers were obtained to generate 11 integration-free patient-specific iPSC clones. The iPSC-CMs were derived using established protocols. Compared to the WT iPSC-CMs, the Hom L39X derived-CMs PLN had an abnormal cytoplasmic distribution and formed intracellular aggregates, with the loss of perinuclear localization. There was also a 70% and 50% reduction of mRNA and protein expression of PLN respectively in L39X compared to WT iPSC-CMs. These findings indicated that L39X PLN is both under-expressed and mis-localized within the cell. To validate this observation in-vivo, we genetically modified FVB mice to harbour the human L39X. Following electroporation, positively transfected mouse embryonic stem cells were injected into host blastocysts to make humanized KM that were subsequently used to generate either a protamine-Cre (endogenous PLN driven expression) or a cardiac TNT mouse (i.e., CMP specific). Conclusion: Our data confirm an abnormal intracellular distribution of PLN, with the loss of perinuclear accumulation and mis-localization, suggestive of ineffective targeting to or retention of L39X. The mouse model will be critically important to validate the in-vitro observations and provides an ideal platform for future studies centred on the development of novel therapeutic strategies including virally delivered CRISPR/Cas9 for in-vivo gene editing and testing of biochemical signalling pathways.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Giovanna Del Pozzo ◽  
Dina Mascolo ◽  
Rossella Sartorius ◽  
Alessandra Citro ◽  
Pasquale Barba ◽  
...  

The ability of fd bacteriophage particles to trigger different arms of the immune system has been previously shown by us with particular emphasis on the ability of phages to raise CTL responses in vitro and in vivo. Here we show that fd virions in the absence of adjuvants are able to evoke a DTH reaction mediated by antigen specific CD8+ T cells. In addition, we analyzed the induction of CTL responses in mice depleted of CD4+ T cells, and we observed that short-term secondary CTL responses were induced in the absence of CD4+ T cells while induction of long-term memory CTLs required the presence of CD4+ T lymphocytes. These results examine the cellular mechanism at the basis of fd efficiency and provide new elements to further validate the use of fd particles for eliciting and monitoring antigen-specific CTLs.


2009 ◽  
Vol 418 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Angelo Cereda ◽  
Aristodemo Carpen ◽  
Gianluca Picariello ◽  
Gabriella Tedeschi ◽  
Silvia Pagani

The rhdA gene of Azotobacter vinelandii codes for RhdA, a rhodanese-domain protein with an active-site loop structure which has not currently been found in proteins of the rhodanese-homology superfamily. Considering the lack of information on the functional role of the ubiquitous rhodaneses, in the present study we examined the in vivo functions of RhdA by using an A. vinelandii mutant strain (MV474), in which the rhdA gene was disrupted by deletion. Preliminary phenotypic characterization of the rhdA mutant suggested that RhdA could exert protection over Fe–S enzymes, which are easy targets for oxidative damage. To highlight the role of RhdA in preserving sensitive Fe–S clusters, in the present study we analysed the defects of the rhdA-null strain by exploiting growth conditions which resulted in enhancing the catalytic deficiency of enzymes with vulnerable Fe–S clusters. We found that a lack of RhdA impaired A. vinelandii growth in the presence of gluconate, a carbon source that activates the Entner–Doudoroff pathway in which the first enzyme, 6-phosphogluconate dehydratase, employs a 4Fe–4S cluster as an active-site catalyst. By combining proteomics, enzymatic profiles and model systems to generate oxidative stress, evidence is provided that to rescue the effects of a lack of RhdA, A. vinelandii needed to activate defensive activities against oxidative damage. The possible functionality of RhdA as a redox switch which helps A. vinelandii in maintaining the cellular redox balance was investigated by using an in vitro model system that demonstrated reversible chemical modifications in the highly reactive RhdA Cys230 thiol.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Elia R. Langenmair ◽  
Eva J. Kubosch ◽  
Gian M. Salzmann ◽  
Samuel Beck ◽  
Hagen Schmal

Objective. Osteoarthritis is a long-term complication of acute articular infections. However, the roles of cartilage and synovia in this process are not yet fully understood.Methods. Patients with acute joint infections were enrolled in a prospective clinical trial and the cytokine composition of effusions compared in patients with arthroplasty (n= 8) or with intact joints (n= 67). Cytokines and cell function were also analyzed using a humanin vitromodel of joint infection.Results. Synovial IL-1βlevels were significantly higher in patients with arthroplasty (p= 0.004). Higher IL-1βconcentrations were also found in thein vitromodel without chondrocytes (p< 0.05). The anti-inflammatory cytokines IL-4 and IL-10 were consistently expressedin vivoandin vitro, showing no association with the presence of cartilage or chondrocytes. In contrast, FasL levels increased steadilyin vitro, reaching higher levels without chondrocytes (p< 0.05). Likewise, the viability of synovial fibroblasts (SFB) during infection was higher in the presence of chondrocytes. The cartilage-metabolism markers aggrecan and bFGF were at higher concentrations in intact joints, but also synthesized by SFB.Conclusions. Our data suggest an anti-inflammatory effect of cartilage associated with the SFBs’ increased resistance to infections, which displayed the ability to effectively synthesize cartilage metabolites.The trial is registered with DRKS00003536, MISSinG.


2014 ◽  
Vol 28 (12) ◽  
pp. 1999-2011 ◽  
Author(s):  
Allyson Booth ◽  
Tammy Trudeau ◽  
Crystal Gomez ◽  
M. Scott Lucia ◽  
Arthur Gutierrez-Hartmann

The signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required. Here we directly examined the role of persistent Ras/MAPK signaling in differentiation, proliferation, and tumorigenesis of rat pituitary somatolactotrope GH4 cells. We stimulated Ras/MAPK signaling in a persistent, long-term manner (over 6 d) in GH4 cells using two distinct approaches: 1) a doxycycline-inducible, oncogenic V12Ras expression system; and 2) continuous addition of exogenous epidermal growth factor. We find that long-term activation of the Ras/MAPK pathway over 6 days promotes differentiation of the bihormonal somatolactotrope GH4 precursor cell into a prolactin-secreting, lactotrope cell phenotype in vitro and in vivo with GH4 cell xenograft tumors. Furthermore, we show that persistent activation of the Ras/MAPK pathway not only fails to promote cell proliferation, but also diminishes tumorigenic characteristics in GH4 cells in vitro and in vivo. These data demonstrate that activated MAPK promotes differentiation and is not sufficient to drive tumorigenesis, suggesting that pituitary lactotrope tumor cells have the ability to evade the tumorigenic fate that is often associated with Ras/MAPK activation.


Sign in / Sign up

Export Citation Format

Share Document