scholarly journals Identification of novel protein lysine acetyltransferases inEscherichia coli

2018 ◽  
Author(s):  
David G. Christensen ◽  
Jesse G. Meyer ◽  
Jackson T. Baumgartner ◽  
Alexandria K. D’Souza ◽  
William C. Nelson ◽  
...  

AbstractPost-translational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either non-enzymatically or enzymatically. The non-enzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donors to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified inE. coli. Here, we demonstrate the existence of 4 additionalE. coliKATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the post-translational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific non-enzymatic and enzymatic protein acetylation mechanisms present in bacteria.ImportanceNε-lysine acetylation is one of the most abundant and important post-translational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed anE. colistrain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate non-enzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellar-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial post-translational modification.

mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
David G. Christensen ◽  
Jesse G. Meyer ◽  
Jackson T. Baumgartner ◽  
Alexandria K. D’Souza ◽  
William C. Nelson ◽  
...  

ABSTRACT Posttranslational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either nonenzymatically or enzymatically. The nonenzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donor to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified in Escherichia coli. Here, we demonstrate the existence of 4 additional E. coli KATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the posttranslational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific nonenzymatic and enzymatic protein acetylation mechanisms present in bacteria. IMPORTANCE Nε-Lysine acetylation is one of the most abundant and important posttranslational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed an E. coli strain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate nonenzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellum-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial posttranslational modification.


2014 ◽  
Vol 70 (a1) ◽  
pp. C299-C299
Author(s):  
Misty Kuhn ◽  
Karolina Majorek ◽  
Ekaterina Filippova ◽  
George Minasov ◽  
Alan Wolfe ◽  
...  

The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically relevant proteins from human pathogens and provides the infectious disease community with a high throughput pipeline for structure determination. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. Bacterial species generally have many acetyl-coenzyme A dependent GCN5-like Acetyl Transferases (GNATs), however, the substrates of most of them are unknown. Proteomic analysis has also revealed extensive post-translational modification of bacterial proteins, especially acetylation of lysine Nε. These observations led the CSGID to develop a high throughput substrate screen and initiate characterization of bacterial GNATs. One of the bacterial GNATs that acetylates lysine residues, is the Pseudomonas aeruginosa protein PA4794, that acetylates both peptides having a C-terminal lysine and the drug, chloramphenicol. Surprisingly, the acetylation of these two substrates by PA4794 is catalyzed by the enzyme using different active site residues and different kinetic mechanisms. Although it was expected that the GNATs would play a major role in protein acetylation, much of the lysine acetylation observed in bacteria is actually due to the metabolite acetylphosphate (1,2). Crystal structures and proteomics experiments revealed what makes some lysine residues particularly sensitive to acetylphosphate dependent lysine acetylation and what is required for subsequent enzymatic deacetylation. CSGID is funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C and Midwest Center for Structural Genomics by grant GM094585


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


2009 ◽  
Vol 419 (1) ◽  
pp. 177-186 ◽  
Author(s):  
James W. A. Allen ◽  
Elizabeth B. Sawyer ◽  
Michael L. Ginger ◽  
Paul D. Barker ◽  
Stuart J. Ferguson

c-type cytochromes are normally characterized by covalent attachment of the iron cofactor haem to protein through two thioether bonds between the vinyl groups of the haem and the thiol groups of a CXXCH (Cys–Xaa–Xaa–Cys–His) motif. In cells, the haem attachment is an enzyme-catalysed post-translational modification. We have previously shown that co-expression of a variant of Escherichia coli cytochrome b562 containing a CXXCH haem-binding motif with the E. coli Ccm (cytochrome c maturation) proteins resulted in homogeneous maturation of a correctly formed c-type cytochrome. In contrast, in the absence of the Ccm apparatus, the product holocytochrome was heterogeneous, the main species having haem inverted and attached through only one thioether bond. In the present study we use further variants of cytochrome b562 to investigate the substrate specificity of the E. coli Ccm apparatus. The system can mature c-type cytochromes with CCXXCH, CCXCH, CXCCH and CXXCHC motifs, even though these are not found naturally and the extra cysteine residue might, in principle, disrupt the biogenesis proteins which must interact intricately with disulfide-bond oxidizing and reducing proteins in the E. coli periplasm. The Ccm proteins can also attach haem to motifs of the type CXnCH where n ranges from 2 to 6. For n=3 and 4, the haem attachment was correct and homogeneous, but for higher values of n the holocytochromes displayed oxidative addition of sulfur and/or oxygen atoms associated with the covalent haem-attachment process. The implications of our observations for the haem-attachment reaction, for genome analyses and for the substrate specificity of the Ccm system, are discussed.


2017 ◽  
Author(s):  
Weiwei Qin ◽  
Zhenhuan Du ◽  
He Huang ◽  
Youhe Gao

AbstractBiomarker is the measurable change associated with a physiological or pathophysiological process, its nature is change. Contrast to the blood which is under homeostatic controls, urine reflects changes in the body earlier and more sensitive therefore is a better biomarker source. Lysine acetylation is an abundant and highly regulated post-translational modification. It plays a pivotal role in modulating diverse biological processes and is associated with various important diseases. Enrichment or visualization of proteins with specific post-translational modifications provides a method for sampling the urinary proteome and reducing sample complexity. In this study, we used anti-acetyllysine antibody-based immunoaffinity enrichment combined with high-resolution mass spectrometry to profile lysine-acetylated proteins in normal human urine. A total of 629 acetylation sites on 315 proteins were identified, including some very low-abundance proteins. This is the first proteome-wide characterization of lysine acetylation proteins in normal human urine. Our dataset provides a useful resource for the further discovery of the lysine acetylated proteins as biomarker in urine.


2009 ◽  
Vol 15 (5) ◽  
pp. 641-649 ◽  
Author(s):  
Deepalakshmi Dakshinamoorthy Putchen

Top-down sequencing using quadrupole time-of-flight mass spectrometry is used as a direct way of locating the mutated sites of recombinant proteins and post-translational modification in a protein. Several mutants of barstar, expressed in E. coli, were confirmed by analyzing the fragmentation pattern of mutants. A contaminant protein, that appeared while purifying mutants of barstar, was identified as an acyl carrier protein from E. coli with a post-translational modification on serine residue, indicating that the protein was biologically active. A mutant of ribosomal protein S6 has been characterized with neutral loss of ammonia at the N-terminal region of the protein. The power of the top-down approach in characterizing the mutants of recombinant proteins has been demonstrated.


2018 ◽  
Author(s):  
Birgit Schilling ◽  
Nathan Basisty ◽  
David G. Christensen ◽  
Dylan Sorensen ◽  
James S. Orr ◽  
...  

ABSTRACTLysine acetylation is thought to provide a mechanism for regulating metabolism in diverse bacteria. Indeed, many studies have shown that the majority of enzymes involved in central metabolism are acetylated and that acetylation can alter enzyme activity. However, the details regarding this regulatory mechanism are still unclear, specifically with regards to the signals that induce lysine acetylation. To better understand this global regulatory mechanism, we profiled changes in lysine acetylation during growth of Escherichia coli on the hexose glucose or the pentose xylose at both high and low sugar concentrations using label-free mass spectrometry. The goal was to see whether lysine acetylation differed during growth on these two different sugars. No significant differences, however, were observed. Rather, the initial sugar concentration was the principal factor governing changes in lysine acetylation, with higher sugar concentrations causing more acetylation. These results suggest that acetylation does not target specific metabolic pathways but rather simply targets accessible lysines, which may or may not alter enzyme activity. They further suggest that lysine acetylation principally results from conditions that favor accumulation of acetyl phosphate, the principal acetate donor in E. coli.IMPORTANCEBacteria alter their metabolism in response to nutrient availability, growth conditions, and environmental stresses. This process is best understood at the level of transcriptional regulation, where many metabolic genes are conditionally expressed in response to diverse cues. However, additional modes of regulations are known to exist. One is lysine acetylation, a post-translational modification known to target many metabolic enzymes. However, unlike transcriptional regulation, little is known about this regulatory mode. We investigated the factors inducing changes in lysine acetylation by comparing growth on glucose and xylose. We found that the specific sugar used for growth did not alter the pattern of acetylation; rather, the principal factor was the amount of sugar, with more sugar yielding more acetylation. These results imply lysine acetylation is a global regulatory mechanism that is not responsive to the specific carbon source per se but rather the accumulation of downstream metabolites.


2020 ◽  
Author(s):  
Taran Driver ◽  
Ruediger Pipkorn ◽  
Vitali Averbukh ◽  
Leszek Frasinski ◽  
Jon P. Marangos ◽  
...  

<div> <p>A large body of research points to the biological importance of combinatorial post-translational modifications in proteins, such as the active role played by histone modification patterns in the development of cancers, neurodevelopmental disorders, neurodegenerative and other diseases. Nonetheless, our understanding of the precise biological function of different modification patterns is limited by the difficulty of identifying and quantifying different combinatorial isomers in their mixtures as they naturally occur. Tandem mass spectrometry, which infers primary structure from the mass-to-charge ratios of biomolecular fragments, is the preferred method of analysis for proteins and their post-translational modifications. However, the information contained in the mass-to-charge ratios of the individual fragments is frequently insufficient to identify the correct set of modification patterns present in a mixture of combinatorial isomers. This is because no possible single fragment of a combinatorially modified sequence is unique to that sequence in its mass-to-charge ratio. Here we show that the combinatorial post-translational modification problem can be solved by the recently introduced technique of two-dimensional partial covariance mass spectrometry, which provides information about fragment connectivity in a biomolecule by quantifying correlations between the random intensity fluctuations of its fragments, across repeated measurements. Unique fragment-fragment correlations provide the missing link between the non-unique individual fragments to produce unambiguous fingerprints of co-occurring combinatorial isomers, enabling the discovery of biomolecular combinatorial modification patterns by mass spectrometry.</p> </div>


2013 ◽  
Vol 51 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Brian T. Weinert ◽  
Vytautas Iesmantavicius ◽  
Sebastian A. Wagner ◽  
Christian Schölz ◽  
Bertil Gummesson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document