scholarly journals Gene transfer of the Caenorhabditis elegans n-3 fatty acid desaturase inhibits neuronal apoptosis

2002 ◽  
Vol 82 (6) ◽  
pp. 1360-1366 ◽  
Author(s):  
Yinlin Ge ◽  
Xiaoying Wang ◽  
Zhihong Chen ◽  
Natalie Landman ◽  
Eng H. Lo ◽  
...  
1998 ◽  
Vol 330 (2) ◽  
pp. 611-614 ◽  
Author(s):  
A. Johnathan NAPIER ◽  
J. Sandra HEY ◽  
J. Dominic LACEY ◽  
R. Peter SHEWRY

We identified a cDNA expressed sequence tag from an animal (the nematode worm Caenorhabditis elegans) that showed weak similarity to a higher-plant microsomal Δ6-desaturase. A full-length cDNA clone was isolated and expressed in the yeast Saccharomyces cerevisiae. This demonstrated that the protein encoded by the C. elegans cDNA was that of a fatty acid Δ6-desaturase, as determined by the accumulation of γ-linolenic acid. The C. elegans Δ6-desaturase contained an N-terminalcytochrome b5 domain, indicating that it had a similar structure to that of the higher-plant Δ6-desaturase. The C. elegans Δ6-desaturase mapped to cosmid W08D2, a region of chromosome III. This is the first example of a Δ6-desaturase isolated from an animal and also the first example of an animal desaturase containing a cytochrome b5 domain.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Hildegard I. D. Mack ◽  
Jennifer Kremer ◽  
Eva Albertini ◽  
Elisabeth K. M. Mack ◽  
Pidder Jansen-Dürr

Abstract Background In the nematode Caenorhabditis elegans, longevity in response to germline ablation, but not in response to reduced insulin/IGF1-like signaling, is strongly dependent on the conserved protein kinase minibrain-related kinase 1 (MBK-1). In humans, the MBK-1 ortholog DYRK1A is associated with a variety of disorders, most prominently with neurological defects observed in Down syndrome. To better understand mbk-1’s physiological roles and their dependence on genetic background, we analyzed the influence of mbk-1 loss on the transcriptomes of wildtype and long-lived, germline-deficient or insulin-receptor defective, C. elegans strains by RNA-sequencing. Results mbk-1 loss elicited global changes in transcription that were less pronounced in insulin-receptor mutant than in germline-deficient or wildtype C. elegans. Irrespective of genetic background, mbk-1 regulated genes were enriched for functions in biological processes related to organic acid metabolism and pathogen defense. qPCR-studies confirmed mbk-1 dependent induction of all three C. elegans Δ9-fatty acid desaturases, fat-5, fat-6 and fat-7, in wildtype, germline-deficient and insulin-receptor mutant strains. Conversely, mbk-1 dependent expression patterns of selected pathogen resistance genes, including asp-12, dod-24 and drd-50, differed across the genetic backgrounds examined. Finally, cth-1 and cysl-2, two genes which connect pathogen resistance to the metabolism of the gaseous messenger and lifespan regulator hydrogen sulfide (H2S), were commonly suppressed by mbk-1 loss only in wildtype and germline-deficient, but not in insulin-receptor mutant C. elegans. Conclusion Our work reveals previously unknown roles of C. elegans mbk-1 in the regulation of fatty acid desaturase- and H2S metabolic-genes. These roles are only partially dependent on genetic background. Considering the particular importance of fatty acid desaturation and H2S for longevity of germline-deficient C. elegans, we propose that these processes at least in part account for the previous observation that mbk-1 preferentially regulates lifespan in these worms.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1245
Author(s):  
Naoufal Lakhssassi ◽  
Valéria Stefania Lopes-Caitar ◽  
Dounya Knizia ◽  
Mallory A. Cullen ◽  
Oussama Badad ◽  
...  

Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.


Author(s):  
Oliva Mendoza‐Pacheco ◽  
Gaspar Manuel Parra‐Bracamonte ◽  
Xochitl Fabiola De la Rosa‐Reyna ◽  
Ana María Sifuentes‐Rincón ◽  
Isidro Otoniel Montelongo‐Alfaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document