scholarly journals The influence of bulk composition on the long-term interior-atmosphere evolution of terrestrial exoplanets

2020 ◽  
Vol 643 ◽  
pp. A44
Author(s):  
Rob J. Spaargaren ◽  
Maxim D. Ballmer ◽  
Dan J. Bower ◽  
Caroline Dorn ◽  
Paul J. Tackley

Aims. The secondary atmospheres of terrestrial planets form and evolve as a consequence of interaction with the interior over geological time. We aim to quantify the influence of planetary bulk composition on the interior–atmosphere evolution for Earth-sized terrestrial planets to aid in the interpretation of future observations of terrestrial exoplanet atmospheres. Methods. We used a geochemical model to determine the major-element composition of planetary interiors (MgO, FeO, and SiO2) following the crystallization of a magma ocean after planet formation, predicting a compositional profile of the interior as an initial condition for our long-term thermal evolution model. Our 1D evolution model predicts the pressure–temperature structure of the interior, which we used to evaluate near-surface melt production and subsequent volatile outgassing. Volatiles are exchanged between the interior and atmosphere according to mass conservation. Results. Based on stellar compositions reported in the Hypatia catalog, we predict that about half of rocky exoplanets have a mantle that convects as a single layer (whole-mantle convection), and the other half exhibit double-layered convection due to the presence of a mid-mantle compositional boundary. Double-layered convection is more likely for planets with high bulk planetary Fe-content and low Mg/Si-ratio. We find that planets with low Mg/Si-ratio tend to cool slowly because their mantle viscosity is high. Accordingly, low-Mg/Si planets also tend to lose volatiles swiftly through extensive melting. Moreover, the dynamic regime of the lithosphere (plate tectonics vs. stagnant lid) has a first-order influence on the thermal evolution and volatile cycling. These results suggest that the composition of terrestrial exoplanetary atmospheres can provide information on the dynamic regime of the lithosphere and the thermo-chemical evolution of the interior.

Author(s):  
Takehiro Koyaguchi ◽  
Katsuya Kaneko

In order to understand the governing factors of petrological features of erupted magmas of island-arc or continental volcanoes, thermal fluctuations of subvolcanic silicic magma chambers caused by intermittent basalt replenishments are investigated from the theoretical viewpoint. When basaltic magmas are repeatedly emplaced into continental crust, a long-lived silicic magma chamber may form. A silicic magma chamber within surrounding crust is composed of crystal-melt mixtures with variable melt fractions. We define the region which behaves as a liquid in a mechanical sense (‘liquid part’) and the region which is in the critical state between liquid and solid states (‘mush’) collectively as a magma chamber in this study. Such a magma chamber is surrounded by partially molten solid with lower melt fractions. Erupted magmas are considered to be derived from the liquid part. The size of a silicic magma chamber is determined by the long-term balance between heat supply from basalt and heat loss by conduction, while the temperature and the volume of the liquid part fluctuate in response to individual basalt inputs. Thermal evolution of a silicic magma chamber after each basalt input is divided into two stages. In the first stage, the liquid part rapidly propagates within the magma chamber by melting the silicic mush, and its temperature rises above and decays back to the effective fusion temperature of the crystal-melt mixture on a short timescale. In some cases the liquid part no longer exists. In the second stage, the liquid part ceases to propagate and cools slowly by heat conduction on a much longer timescale. The petrological features of the liquid part, such as the amount of unmelted preexisting crystals, depend on the intensity of individual pulses of the basalt heat source and the degree of fractionation during the first stage, as well as the bulk composition of the silicic magma.


2012 ◽  
Vol 8 (S293) ◽  
pp. 339-349 ◽  
Author(s):  
Paul J. Tackley ◽  
Michael M. Ammann ◽  
John P. Brodholt ◽  
David P. Dobson ◽  
Diana Valencia

AbstractHere, the state of our knowledge regarding the interior dynamics and evolution of habitable terrestrial planets including Earth and super-Earths is reviewed, and illustrated using state-of-the-art numerical models. Convection of the rocky mantle is the key process that drives the evolution of the interior: it causes plate tectonics, controls heat loss from the metallic core (which generates the magnetic field) and drives long-term volatile cycling between the atmosphere/ocean and interior. Geoscientists have been studying the dynamics and evolution of Earth's interior since the discovery of plate tectonics in the late 1960s and on many topics our understanding is very good, yet many first-order questions remain. It is commonly thought that plate tectonics is necessary for planetary habitability because of its role in long-term volatile cycles that regulate the surface environment. Plate tectonics is the surface manifestation of convection in the 2900-km deep rocky mantle, yet exactly how plate tectonics arises is still quite uncertain; other terrestrial planets like Venus and Mars instead have a stagnant lithosphere- essentially a single plate covering the entire planet. Nevertheless, simple scalings as well as more complex models indicate that plate tectonics should be easier on larger planets (super-Earths), other things being equal. The dynamics of terrestrial planets, both their surface tectonics and deep mantle dynamics, change over billions of years as a planet cools. Partial melting is a key process influencing solid planet evolution. Due to the very high pressure inside super-Earths' mantles the viscosity would normally be expected to be very high, as is also indicated by our density function theory (DFT) calculations. Feedback between internal heating, temperature and viscosity leads to a superadiabatic temperature profile and self-regulation of the mantle viscosity such that sluggish convection still occurs.


2019 ◽  
Vol 627 ◽  
pp. A48 ◽  
Author(s):  
Dennis Höning ◽  
Nicola Tosi ◽  
Tilman Spohn

Aims. The long-term carbon cycle for planets with a surface entirely covered by oceans works differently from that of the present-day Earth because inefficient erosion leads to a strong dependence of the weathering rate on the rate of volcanism. In this paper, we investigate the long-term carbon cycle for these planets throughout their evolution. Methods. We built box models of the long-term carbon cycle based on CO2 degassing, seafloor-weathering, metamorphic decarbonation, and ingassing and coupled them with thermal evolution models of plate tectonics and stagnant-lid planets. Results. The assumed relationship between the seafloor-weathering rate and the atmospheric CO2 or the surface temperature strongly influences the climate evolution for both tectonic regimes. For a planet with plate tectonics, the atmospheric CO2 partial pressure is characterized by an equilibrium between ingassing and degassing and depends on the temperature gradient in subduction zones affecting the stability of carbonates. For a stagnant lid planet, partial melting and degassing are always accompanied by decarbonation, such that the combined carbon content of the crust and atmosphere increases with time. While the initial mantle temperature on planets with plate tectonics only affects the early evolution, it influences the evolution of the surface temperature of stagnant-lid planets for much longer. Conclusions. For both tectonic regimes, mantle cooling results in a decreasing atmospheric CO2 partial pressure. For a planet with plate tectonics this is caused by an increasing fraction of subduction zones that avoid crustal decarbonation, and for stagnant-lid planets this is caused by an increasing decarbonation depth. This mechanism may partly compensate for the increase of the surface temperature due to increasing solar luminosity with time, and thereby contribute to keeping planets habitable in the long-term.


Author(s):  
Roy Livermore

The Earth’s climate changes naturally on all timescales. At the short end of the spectrum—hours or days—it is affected by sudden events such as volcanic eruptions, which raise the atmospheric temperature directly, and also indirectly, by the addition of greenhouse gases such as water vapour and carbon dioxide. Over years, centuries, and millennia, climate is influenced by changes in ocean currents that, ultimately, are controlled by the geography of ocean basins. On scales of thousands to hundreds of thousands of years, the Earth’s orbit around the Sun is the crucial influence, producing glaciations and interglacials, such as the one in which we live. Longer still, tectonic forces operate over millions of years to produce mountain ranges like the Himalayas and continental rifts such as that in East Africa, which profoundly affect atmospheric circulation, creating deserts and monsoons. Over tens to hundreds of millions of years, plate movements gradually rearrange the continents, creating new oceans and destroying old ones, making and breaking land and sea connections, assembling and disassembling supercontinents, resulting in fundamental changes in heat transport by ocean currents. Finally, over the very long term—billions of years—climate reflects slow changes in solar luminosity as the planet heads towards a fiery Armageddon. All but two of these controls are direct or indirect consequences of plate tectonics.


2009 ◽  
Vol 149 (1-3) ◽  
pp. 143-152 ◽  
Author(s):  
R.O. Abdel Rahman ◽  
H.A. Ibrahim ◽  
N.M. Abdel Monem

1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2021 ◽  
Author(s):  
Chloé M. Marcilly ◽  
Trond H. Torsvik ◽  
Mathew Domeier ◽  
Dana L. Royer

<p>CO<sub>2</sub> is the most important greenhouse gas in the Earth’s atmosphere and has fluctuated considerably over geological time. However, proxies for past CO<sub>2 </sub>concentrations have large uncertainties and are mostly limited to Devonian and younger times. Consequently, CO<sub>2</sub> modelling plays a key role in reconstructing past climate fluctuations. Facing the limitations with the current CO<sub>2</sub> models, we aim to refine two important forcings for CO<sub>2</sub> levels over the Phanerozoic, namely carbon degassing and silicate weathering.</p><p>Silicate weathering and carbonate deposition is widely recognized as a primary sink of carbon on geological timescales and is largely influenced by changes in climate, which in turn is linked to changes in paleogeography. The role of paleogeography on silicate weathering fluxes has been the focus of several studies in recent years. Their aims were mostly to constrain climatic parameters such as temperature and precipitation affecting weathering rates through time. However, constraining the availability of exposed land is crucial in assessing the theoretical amount of weathering on geological time scales. Associated with changes in climatic zones, the fluctuation of sea-level is critical for defining the amount of land exposed to weathering. The current reconstructions used in<sub></sub>models tend to overestimate the amount of exposed land to weathering at periods with high sea levels. Through the construction of continental flooding maps, we constrain the effective land area undergoing silicate weathering for the past 520 million years. Our maps not only reflect sea-level fluctuations but also contain climate-sensitive indicators such as coal (since the Early Devonian) and evaporites to evaluate climate gradients and potential weatherablity through time. This is particularly important after the Pangea supercontinent formed but also for some time after its break-up.</p><p>Whilst silicate weathering is an important CO<sub>2</sub> sink, volcanic carbon degassing is a major source but one of the least constrained climate forcing parameters. There is no clear consensus on the history of degassing through geological time as there are no direct proxies for reconstructing carbon degassing, but various proxy methods have been postulated. We propose new estimates of plate tectonic degassing for the Phanerozoic using both subduction flux from full-plate models and zircon age distribution from arcs (arc-activity) as proxies.</p><p>The effect of revised modelling parameters for weathering and degassing was tested in the well-known long-term models GEOCARBSULF and COPSE. They revealed the high influence of degassing on CO<sub>2</sub> levels using those models, highlighting the need for enhanced research in this direction. The use of arc-activity as a proxy for carbon degassing leads to interesting responses in the Mesozoic and brings model estimates closer to CO<sub>2 </sub> proxy values. However, from simulations using simultaneously the revised input parameters (i.e weathering and degassing) large model-proxy discrepancies remain and notably for the Triassic and Jurassic.</p><p> </p>


2021 ◽  
Author(s):  
Cédric Gillmann ◽  
Gregor Golabek ◽  
Sean Raymond ◽  
Paul Tackley ◽  
Maria Schonbachler ◽  
...  

<p>Terrestrial planets in the Solar system generally lack surface liquid water. Earth is at odd with this observation and with the idea of the giant Moon-forming impact that should have vaporized any pre-existing water, leaving behind a dry Earth. Given the evidence available, this means that either water was brought back later or the giant impact could not vaporize all the water.</p><p>We have looked at Venus for answers. Indeed, it is an example of an active planet that may have followed a radically different evolutionary pathway despite the similar mechanisms at work and probably comparable initial conditions. However, due to the lack of present-day plate tectonics, volatile recycling, and any surface liquid oceans, the evolution of Venus has likely been more straightforward than that of the Earth, making it easier to understand and model over its long term evolution.</p><p>Here, we investigate the long-term evolution of Venus using self-consistent numerical models of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We test implications of wet and dry late accretion compositions, using present-day Venus atmosphere measurements. Atmospheric losses are only able to remove a limited amount of water over the history of the planet. We show that late accretion of wet material exceeds this sink. CO<sub>2</sub> and N<sub>2</sub> contributions serve as additional constraints.</p><p>Water-rich asteroids colliding with Venus and releasing their water as vapor cannot explain the composition of Venus atmosphere as we measure it today. It means that the asteroidal material that came to Venus, and thus to Earth, after the giant impact must have been dry (enstatite chondrites), therefore preventing the replenishment of the Earth in water. Because water can obviously be found on our planet today, it means that the water we are now enjoying on Earth has been there since its formation, likely buried deep in the Earth so it could survive the giant impact. This in turn suggests that suggests that planets likely formed with their near-full budget in water, and slowly lost it with time.</p>


Sign in / Sign up

Export Citation Format

Share Document