scholarly journals Extrazonal steppes of forest belt on eastern macroslope of the Urals

2019 ◽  
Vol 16 ◽  
pp. 00043
Author(s):  
Natalya Zolotareva ◽  
Andrey Korolyuk

Extrazonal steppes of forest belt on eastern macroslope of the Middle and South Urals have small coenotic diversity. The most part of studied communities are petrophytic steppes on outcrops, which determine regional features of plant cover and provide habitats to rare, endemic and relict plant species. Petrophytic steppes correspond to order Helictotricho- Stipetalia, meadow steppes and xeric meadows, shrub thickets correspond to order Brachypodietalia pinnati (class Festuco-Brometea).

Author(s):  
М. А. Babaeva ◽  
S. V. Osipova

The regularities of changes in the resistance of different groups of fodder plants to adverse conditions were studied. This is due to the physiological properties that allow them to overcome the harmful effects of the environment. As a result of research species - plant groups with great adaptive potential to the harsh continental semi-desert conditions were identified. Monitoring observation and experimental studies showed too thin vegetation cover as a mosaic, consisting of perennial xerophytic herbs and semishrubs, sod grasses, saltwort and wormwood, as well as ephemera and ephemeroids under the same environmental conditions, depending on various climatic and anthropogenic factors. This is due to the inability or instability of plant species to aggressive living environment. It results in horizontal heterogeneity of the grass stand, division into smaller structures, and mosaic in the vegetation cover of the Kochubey biosphere station. The relative resistance to moderate stress was identified in the following species from fodder plants Agropyron cristatum, A. desertorum, Festuca valesiaca, Cynodon dactylon, Avena fatua; as for strong increasing their abundance these are poorly eaten plant species Artemisia taurica, Atriplex tatarica, Falcaria vulgaris, Veronica arvensis, Arabidopsis thaliana and other. On the site with an increasing pressure in the herbage of phytocenoses the number of xerophytes of ruderal species increases and the spatial structure of the vegetation cover is simplified. In plant communities indigenous species are replaced by adventive plant species. The mosaic of the plant cover of phytocenoses arises due to the uneven distribution in the space of environmental formation, i.e. an edificatory: Salsola orientalis, S. dendroides, Avena fatua, Cynodon dactylon, Artemisia taurica, A. lercheanum, Xanthium spinosum, Carex pachystyli, under which the remaining components of the community adapt. Based on the phytocenotic indicators of pasture phytocenoses it can be concluded that the vegetation cover is in the stage of ecological stress and a decrease in the share of fodder crops and an increase in the number of herbs indicates this fact.


2020 ◽  
pp. 13-26
Author(s):  
Ya. M. Golovanov ◽  
L. M. Abramova

The synthaxonomy and ecology of communities with predominance of Hordeum jubatum L., included in the «black list» of the Republic of Bashkortostan (Abramova, Golovanov, 2016a), the preliminary «black list» of the Orenburg Region (Abramova et al., 2017) and the «Black book of flora of Middle Russia» (Vinogradova et al., 2010), are discussed in the article, which continues a series of publications on the classification of communities with alien species in the South Urals (Abramova, 2011, 2016; Abramova, Golovanov, 2016b). H. jubatum was first found in the South Urals in 1984 as an adventive plant occurring along streets in the town of Beloretsk, as well as in gardens where it was grown as an ornamental plant. During the 1980s, it was met also at some railway stations and in several rural localities. Its active distribution throughout the South Urals started in XXI century (Muldashev et al., 2017). Currently, H. jubatum, most naturalized in the native salted habitats of the steppe zone, is often found in disturbed habitats in all natural zones within the region. The short vegetating period and resistance to drought allowed it to be naturalized also in dry steppes, where it increasingly acts as the main weed on broken pastures. The aim of the work, conducted during 2011–2017, was further finding the centers of H. jubatum invasion in 3 regions adjacent to the South Urals — the Republic of Bashkortostan and the Chelyabinsk and Orenburg Regions (Fig. 1). In the main sites of H. jubatum invasion 71 relevès were performed on 10–100 m² sample plots with the information of location, date, the plot size, the total cover, average and maximum height of herb layer. Classification was carried out following the Braun-Blanquet method (Braun-Blanquet, 1964) with using the Kopecký–Hejný approach (Kopecký, Hejný, 1974). The community ecology was assessed by weighted average values according to the optimal ecological scales by E. Landolt with usfge of the software of IBIS (Zverev, 2007). PCA-ordination method with usage CANOCO 4.5 software package was applied to identify patterns of environmental differentiation of invasive communities. The current wide distribution area of H. jubatum and its naturalization in synanthropic, meadow and saline communities in the South Urals, as well as its occurrence within mountain-forest belt, forest-steppe and steppe zones both in the Cis- and Trans-Urals, indicates species wide ecological amplitude, high adaptive capability and invasive potential. Its vast thickets are known in the steppe zone, both in disturbed steppes around settlements and along the banks of water bodies. The invasion sites are smaller in the northern regions and mountain forest belt, where these are located in settlements or along communication lines. Therefore, the steppe zone is more favorable for invasive populations, and their distribution will continue from the south to the north. Communities with predominance of H. jubatum, described earlier (Abramova, Golovanov, 2016b) in the Cis-Urals as two derivative communities (associations Hordeum jubatum [Scorzonero–Juncetea gerardii], Hordeum jubatum [Artemisietea]) and Polygono avicularis–Hordeetum jubati, were met in other regions of the South Urals. Also a new derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati], occuring in the northern part of the Cis-Urals and Trans-Urals, was established. In new habitats this species forms three types of communities: ass. Polygono avicularis–Hordeetum jubati (Fig. 2) the most widespread in anthropogenic habitats throughout the South Urals; derivative community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii] (Fig. 5) which replaces saline meadows mainly in the steppe zone of the region; derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (Fig. 4) which y replaces low-herb meadows in the forest-steppe zone and mountain-forest belt. PCA ordination (Fig. 6) shows that moisture (H) and soil richness-salinization (S) factors are in priority in differentiation of communities with predominance H. jubatum. The first axis is mainly related to the salinization and soil richness. The community pattern along the second axis is associated with wetting factor. The cenoses of the derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (less salted substrates in drier conditions in the northern part of the forest-steppe zone and the mountain forest belt) are grouped in the upper part of the ordination diagram, while communities of ass. Polygono avicularis–Hordeetum jubati (drier conditions in settlements, the steppe zone) in its low left part. Thus, axis 1 also reflects the intensity of trampling. Another group is formed by cenoses of the derivate community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii], (salt substrates with a high level of moisturization, on not very damaged water body banks). All communities with H. jubatum are well differentiated in the space of the main ordination axes that indirectly confirms the correctness of our syntaxonomic decision. Undoubted is further expansion of H. jubatum with its entering both anthropogenic and natural plant communities within the South Urals that suggests a constant monitoring in centers of species invasion.


2012 ◽  
Vol 1 (1) ◽  
pp. 48 ◽  
Author(s):  
Alan Hamilton ◽  
Shengji Pei ◽  
Huyin Huai ◽  
Seona Anderson

Compared to other groups of organisms, plants require distinctive approaches in their conservation because of their keystone roles in ecosystems and economies. The state of the whole plant cover of the Earth should be of concern to conservationists – for its capacity to ensure the survival of plant species, deliver ecosystem services (locally to globally) and provide produce from plants in ecologically sustainable ways. The primary targets of attention in ecosystem-based plant conservation are the relationships between people and plants, as relevant to every locality, rather than the species-centric approach of conventional plant conservation. Moving plant conservation to an ecosystem-based approach will require the development of training programmes for field practitioners and of information systems for their use.


2018 ◽  
Vol 19 (1) ◽  
pp. 106-111
Author(s):  
IRINA V. MASHKOVA ◽  
TATYANA G. KRUPNOVA ◽  
ANASTASIYA M. KOSTRYUKOVA ◽  
NIKITA E. VLASOV

Mashkova IV, Krupnova TG, Kostryukova AM, Vlasov NE. 2018. Short Communication: Biodiversity of weeds in Ilmen State Reserve, Russia. Biodiversitas 19: 106-111. Weeds are a synanthropic flora. Human exposure to the natural landscape leads to the spread of synanthropic plant species, so weeds begin to occupy a significant place in the structure of ecosystem biodiversity. The aim of this study was to investigate the weeds biodiversity structure and to assess the extent of invasion of weeds into the territory of the Ilmen State Reserve in South Urals, Russia. This paper presents the results of study of weeds during the vegetation period in 2013–2017. Fifty one species of weeds distributed in four genera and six families were found on the territory of the Southern Forestry of the Ilmen State Reserve. Besides, the differences between species diversity of weeds on three types of roads (gravel, earth and foot) and on two types of forests (birch and pine) were also discovered in this study . The greatest degree of invasion was discovered for foot roads. It was noted that pine forest is the most resistant the invasion of weeds.


Author(s):  
Santonu Goswami ◽  
John Gamon ◽  
Sergio Vargas ◽  
Craig Tweedie

Here we investigate relationships between NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species near Barrow, Alaska. We explore how key plant species differ in biomass, leaf area index (LAI) and how can vegetation spectral indices be used to estimate biomass and LAI for key plant species. A vegetation index (VI) or a spectral vegetation index (SVI) is a quantitative predictor of plant biomass or vegetative vigor, usually formed from combinations of several spectral bands, whose values are added, divided, or multiplied in order to yield a single value that indicates the amount or vigor of vegetation. For six key plant species, NDVI was strongly correlated with biomass (R2 = 0.83) and LAI (R2 = 0.70) but showed evidence of saturation above a biomass of 100 g/m2 and an LAI of 2 m2/m2. Extrapolation of a biomass-plant cover model to a multi-decadal time series of plant cover observations suggested that Carex aquatilis and Eriophorum angustifolium decreased in biomass while Arctophila fulva and Dupontia fisheri increased 1972-2008.


2000 ◽  
Vol 78 (8) ◽  
pp. 1021-1033 ◽  
Author(s):  
Ann Marie Odasz-Albrigtsen ◽  
Hans Tømmervik ◽  
Patrick Murphy

Photosynthetic efficiency was estimated by chlorophyll fluorescence measurements (Fv/Fm) in 11 plant species growing along a steep gradient of airborne pollution along the Russian-Norwegian border (70°N, 30°E). Photosynthetic efficiency was positively correlated with environmental variables including annual temperature and a maritime gradient and was negatively correlated with the airborne concentrations of Cu, Ni, and SO2 from the Cu-Ni smelters. Photosynthetic efficiency in six plant species from the mixed forest, but not pine (Pinus sylvestris L.), and three species from the birch forest was inversely correlated with SO2 and the concentrations of Ni and Cu in lichens. Measurement of fluorescence in these species was a sensitive indicator of pollutant impact. Plant cover at the 16 study sites and the photosynthetic efficiency of five target species correlated with normalized difference vegetation index (NDVI) values. This study demonstrated that it is possible to detect relations among field-measured ecophysiological responses in plants, levels of airborne pollutants, and satellite remote-sensed data.Key words: chlorophyll fluorescence, smelters, sulfur dioxide, nickel, copper, normalized difference vegetation index (NDVI).


2010 ◽  
Vol 19 (4) ◽  
pp. 490 ◽  
Author(s):  
Erich K. Dodson ◽  
David W. Peterson ◽  
Richy J. Harrod

Slope stabilisation treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilisation on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire in Washington State, USA. We applied four seeding and three fertilisation treatments to experimental plots at eight burned sites in spring 2005 and surveyed vegetation during the first two growing seasons after fire. Seeding significantly reduced native non-seeded species richness and cover by the second year. Fertilisation increased native plant cover in both years, but did not affect plant species richness. Seeding and fertilisation significantly increased exotic cover, especially when applied in combination. However, exotic cover and richness were low and treatment effects were greatest in the first year. Seeding suppressed several native plant species, especially disturbance-adapted forbs. Fertilisation, in contrast, favoured several native understorey plant species but reduced tree regeneration. Seeding, even with native species, appears to interfere with the natural recovery of native vegetation whereas fertilisation increases total plant cover, primarily by facilitating native vegetation recovery.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Brice Armand Fanou ◽  
Jean Robert Klotoe ◽  
Lauris Fah ◽  
Victorien Dougnon ◽  
Charles Hornel Koudokpon ◽  
...  

Abstract Background Candidiasis, an opportunistic cosmopolitan disease is nowadays like bacterial infections which is a real public health problem. In view of the emergence of Candida strains resistant to existing antifungal agents, alternative solutions should be considered. This is the purpose of this ethnobotanical survey, which aims to identify the medicinal plant species traditionally used to treat candidiasis in traditional markets of southern Benin. Methods The study was performed from October 2015 to January 2018 in the traditional markets of Southern-Benin. Data were collected by two complementary methods: triplet purchase of medicinal recipes (ATRM) from herbalists markets and semi-structured interview (ISS) from traditional healers. Results A total of 109 species of medicinal plants belonging to 44 families have been listed and identified. The most frequently cited species were Pteleopsis suberosa Engl. & Diels, Lantana camara L., Cyanthillium cinereum (L.) H. Rob, Ocimum gratissimum L. and Lippia multiflora Moldenke with respectively 43.84, 39.73 and 34.25% citation frequencies for the last three species respectively. Leguminosae (20.18%), Euphorbiaceae (5.50%) and Apocynaceae (5.50%) were the most represented botanical families. Leafy stems were more used than other plant organs. The decoction and the oral route were the most appropriate methods of preparation and administration reported by traditional healers. Conclusion Benin’s plant cover is made up of a wide variety of medicinal plant species used in the traditionnal treatment of candidiasis and which may constitute new sources of medicines to be developed.


2011 ◽  
Vol 59 (4) ◽  
pp. 369 ◽  
Author(s):  
Suzanne M. Prober ◽  
Rachel J. Standish ◽  
Georg Wiehl

Emerging ecological theory predicts that vegetation changes caused by introduction of livestock grazing may be irreversible after livestock are removed, especially in regions such as Australia that have a short evolutionary exposure to ungulate grazing. Despite this, fencing to exclude livestock grazing is the major tool used to restore vegetation in Australian agricultural landscapes. To characterise site-scale benefits and limitations of livestock exclusion for enhancing biodiversity in forb-rich York gum (Eucalyptus loxophleba Benth. subsp. loxophleba)–jam (Acacia acuminata Benth.) woodlands, we compared 29 fenced woodlands with 29 adjacent grazed woodlands and 11 little-grazed ‘benchmark’ woodlands in the Western Australian wheatbelt. We explored the following two hypotheses: (1) fencing to exclude livestock facilitates recovery of grazed woodlands towards benchmark conditions, and (2) without additional interventions after fencing, complete recovery of grazed woodlands to benchmark conditions is constrained by ecological or other limits. Our first hypothesis was supported for vegetation parameters, with fenced woodlands being more similar to benchmark woodlands in tree recruitment, exotic plant cover, native plant cover, native plant richness and plant species composition than were grazed woodlands. Further, exotic cover decreased and frequency of jam increased with time-since-fencing (2–22 years). However, we found no evidence that fencing led to decline in topsoil nutrient concentrations towards concentrations at benchmark sites. Our second hypothesis was also supported, with higher topsoil nutrient concentrations and exotic plant cover, and lower native plant richness in fenced than in benchmark woodlands, and different plant species composition between fenced and benchmark woodlands. Regression analyses suggested that recovery of native species richness is constrained by exotic species that persist after fencing, which in turn are more persistent at higher topsoil nutrient concentrations. We conclude that fencing to exclude livestock grazing can be valuable for biodiversity conservation. However, consistent with ecological theory, additional interventions are likely to be necessary to achieve some conservation goals or to promote recovery at nutrient-enriched sites.


2013 ◽  
Vol 72 (2) ◽  
pp. 237-256 ◽  
Author(s):  
Marcin W. Woch ◽  
Magdalena Radwańska ◽  
Anna M. Stefanowicz

Abstract - The aim of the present study was to investigate the composition of spontaneous plant cover and the physicochemical properties of the substratum of spoil heaps of the Siersza hard coal mine in Trzebinia (southern Poland) abandoned in 2001. Floristic and soil analyses were performed in 2011. The substratum was very diverse in terms of texture (sand: 55-92 %, clay: 6-38 %), nutrient content (total C: 1.3-41.0 %, total N: 0.05-0.49 %, total Ca: 0.5-7.3 %) and pH (3.7-8.7). Moreover, total thallium concentration in the substratum was high, ranging from 6.0 to 14.6 mg kg-1. Plant cover varied from 50 to 95 %. The number of plant species per 4m2 varied from 6 to 29 and correlated negatively with total carbon content (r = -0.85, p < 0.01), and positively with sand content in the substratum (r = 66, p < 0.05). The highest number of species per area unit was observed on a humus substratum, where initial soil has developed on the part of carboniferous waste rock spoil under 20-30 year old trees, and the lowest on carbon shale with coal and culm. Among 197 plant species, most belong to Asteraceae, Fabaceae, Poaceae and Rosaceae families. Hemicryptophytes (49%) and terophytes (18%) predominated. The investigated area was primarily colonized by native species spread by the wind. However, invasive alien species also had a significant share (8%) in the plant cover.


Sign in / Sign up

Export Citation Format

Share Document