scholarly journals Water Footprint Assessment in the Agro-industry: A Case Study of Soy Sauce Production

2018 ◽  
Vol 31 ◽  
pp. 08018
Author(s):  
Alfiana Aulia Firda ◽  
Purwanto

In terms of global water scarcity, the water footprint is an indicator of the use of water resources that given knowledge about the environmental impact of consuming a product. The sustainable use of water resources nowadays bring challenges related to the production and consumption phase of water intensive related goods such as in the agro-industry. The objective of the study was to assessment the total water footprint from soy sauce production in Grobogan Regency. The total water footprint is equal to the sum of the supply chain water footprint and the operational water footprint. The assessment is based on the production chain diagram of soy sauce production which presenting the relevant process stages from the source to the final product. The result of this research is the total water footprint of soy sauce production is 1.986,35 L/kg with fraction of green water 78,43%, blue water 21,4% and gray water 0,17%.

2018 ◽  
Vol 22 (10) ◽  
pp. 5111-5123 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively manage agricultural water resources. The water footprint is an improved index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the regional-scale water footprint of crop production based on hydrological processes, and the water footprint is quantified in terms of blue and green water. This method analyses the water-use process during the growth of crops, which includes irrigation, precipitation, groundwater, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprint of wheat, corn and sunflowers were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprint of wheat, corn and sunflowers were 1380–2888, 942–1774 and 2095–4855 m3 t−1, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprints for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further away from the irrigation gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2021 ◽  
Vol 10 (6) ◽  
pp. e26610615777
Author(s):  
Ana Luiza Grateki Barbosa ◽  
Daniel Brasil Ferreira Pinto ◽  
Rafael Alvarenga Almeida

Currently, the management of water resources has gained greater visibility and has become indispensable, with the need for different methodologies which consider all water used and incorporated in the processes and products. In this way, the water footprint concept has been introduced to calculate the appropriation of fresh water on the part of the humankind. Thus, the objective of this work was to determine the water footprint in some sectors of family farming in the municipality of Teófilo Otoni – MG, analyzing the agricultural production of crops cultivated exclusively by the sector in 2017 in Teófilo Otoni. The cultivation of pumpkin, banana, chayote, beans, cassava, Maize, peppers, okra, cabbage, and tangerine were studied. Thus, the total water footprint for the year 2017 was 13,996,735.05 m3.t-1, in which the green water footprint represents 86%, the blue water footprint represents 12.5% and the gray water footprint equals 1.5%. The family farming sector of Teófilo Otoni demands an average of 196.73 liters for a production of R$ 1.00.


2022 ◽  
Vol 82 ◽  
Author(s):  
C. Yerli ◽  
U. Sahin

Abstract Today, most of the world’s population faces water scarcity, while global warming, urbanization, industrialization and population increases continue to increase the severity of the pressure on water resources. Management of water resources plays a key role in the sustainability of agricultural production. The water footprint (WF) is different in comparison to other water statistics because it takes direct and indirect water consumption into account, and helps in the management of water resources. Within this context, the WF of Van province, which is Turkey’s most easterly located arid region, was calculated from 2004 to 2019. The study area covers lake Van, which is Turkey's largest lake, and the Van basin with an area of 23.334 km2 and a population of 1.136.757 (2019). In the calculations, crop (WFcrop), livestock (WFlivestock), and domestic and industrial water footprints (WFdomestic+industrial) were evaluated separately, and blue and green water footprints (WFblue and WFgreen) were analyzed in detail. According to the results, the average WF of Van province was found to be 8.73 billion m3 year-1. Throughout the province, 87.6% of the WF is composed of WFcrop, 4.9% is WFlivestock and 7.5% is WFdomestic+industrial. Of the WFcrop, 62.5% depends on WFblue, i.e., freshwater. Most of the WFlivestock consisted of dairy cattle (49%) and sheep (38%). The average WFdomestic+industrial for 2004 to 2019 was 0.64 billion m3 year-1. The average per capita water footprint of Van province was found to be 889.9 m3 year-1 capita-1. In addition, the province is classified as severe water scarcity (257%). This study is one of the first province-based calculations of WF in Turkey and is the first study to bring a different aspect to published literature by including residual soil moisture from the winter months. As a result of this study, the WFblue of the WFcrop is above the worldwide average and should be reduced by changing the crop pattern or synchronizing the planting and harvest dates of the crops to a period that benefits from precipitation. In addition, this study is expected to contribute to new studies for calculating the provincial scale WF and will have positive effects on agricultural planning, water allocation and the sustainability of water resources.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2546
Author(s):  
Haohan Xing ◽  
Weichao Zheng ◽  
Baoming Li ◽  
Zhidan Liu ◽  
Yuanhui Zhang

Egg production and consumption of eggs in China account for about 40% of the global total, and this constitutes a significant demand for water resources. The shortage of water resources in China means egg production in this country has serious water challenges. However, there are few studies concerning water use in egg production. In this study, the water footprint network (WFN) methodology was applied to analyze the water footprint (WF) of intensive egg production using a typical parent-stock layer breeder farm in North China as a model, which raises 208,663 layer breeders and produces about 2791.39 t eggs per year. The feed and water consumption over 353 days were collected for analysis, and the water footprint of chicken eggs was estimated at the farm level. The water footprint of eggs in a parent-stock layer breeder farm in China was therefore assessed in detail for the first time, and suggestions are put forward to reduce the egg water footprint from the perspective of the production chain and improving water use efficiency on the farm. The results show that (1) the green WF of eggs (water volume/egg weight) ranged from 1.917 to 2.114 m3/kg, the blue WF was 0.584 to 0.644 m3/kg and the grey WF was 0.488 to 0.538 m3/kg; (2) the indirect WF generated by feed contributed over 99.8% of the total; (3) eggs laid by Hy-line Brown hens have a lower WF than those from Hy-line Sonia hens, and the studied layer breeder farm had a higher WF than the global average based on the literature. In this paper, the variation of the WF was also analyzed, and some advice on water management for layer farms in China is provided.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Lin Wang ◽  
Yutong Zhang ◽  
Ling Jia ◽  
Guiyu Yang ◽  
Yizhen Yao ◽  
...  

The estimated, effective increase of agricultural fertilizer applied in China by 10.57 Mts from 2006 to 2016 is a crucial factor affecting the water environment. Based on analyzing the nitrate-leaching rate, the nitrogen-fertilizer application rate, and crop yield in wheat and maize key cultivation divisions in China, this paper applied the grey water footprint analytical method to estimate THE grey water footprint and its proportion to total water footprint and analyzed the spatial differences from 2012 to 2016. Results showed that the grey water footprint of wheat was higher in North and Northwest China with an increasing trend, while that of maize was higher in Southwest and Northwest China because of high nitrogen application rates and low yields in these regions. Except for the Southwestern division, wheat’s grey water footprint was about 1.3 times higher than the blue water footprint, while, for maize, it was two to three times higher. When analyzing and planning water demand for crop irrigation, the water required for nonpoint source pollution due to chemical fertilizers should be considered. Focusing blue water (irrigation) alone, while neglecting green water and ignoring grey water footprints, it might lead to overestimation of available agricultural water resources and failure to meet the goals of sustainable use of water resources.


Author(s):  
Violeta Cabello ◽  
David Romero ◽  
Ana Musicki ◽  
Ângela Guimarães Pereira ◽  
Baltasar Peñate

AbstractThe literature on the water–energy–food nexus has repeatedly signaled the need for transdisciplinary approaches capable of weaving the plurality of knowledge bodies involved in the governance of different resources. To fill this gap, Quantitative Story-Telling (QST) has been proposed as a science for adaptive governance approach that aims at fostering pluralistic and reflexive research processes to overcome narrow framings of water, energy, and food policies as independent domains. Yet, there are few practical applications of QST and most run on a pan-European scale. In this paper, we apply the theory of QST through a practical case study regarding non-conventional water sources as an innovation for water and agricultural governance in the Canary Islands. We present the methods mixed to mobilize different types of knowledge and analyze interconnections between water, energy, and food supply. First, we map and interview relevant knowledge holders to elicit narratives about the current and future roles of alternative water resources in the arid Canarian context. Second, we run a quantitative diagnosis of nexus interconnections related to the use of these resources for irrigation. This analysis provides feedback to the narratives in terms of constraints and uncertainties that might hamper the expectations posed on this innovation. Thirdly, the mixed analysis is used as fuel for discussion in participatory narrative assessment workshops. Our experimental QST process succeeded in co-creating new knowledge regarding the water–energy–food nexus while addressing some relational and epistemological uncertainties in the development of alternative water resources. Yet, the extent to which mainstream socio-technical imaginaries surrounding this innovation were transformed was rather limited. We conclude that the potential of QST within sustainability place-based research resides on its capacity to: (a) bridge different sources of knowledge, including local knowledge; (b) combine both qualitative and quantitative information regarding the sustainable use of local resources, and (c) co-create narratives on desirable and viable socio-technical pathways. Open questions remain as to how to effectively mobilize radically diverse knowledge systems in complex analytical exercises where everyone feels safe to participate.


2018 ◽  
Vol 10 (10) ◽  
pp. 3556 ◽  
Author(s):  
Gang Liu ◽  
Lu Shi ◽  
Kevin Li

This paper develops a lexicographic optimization model to allocate agricultural and non-agricultural water footprints by using the land area as the influencing factor. An index known as the water-footprint-land density (WFLD) index is then put forward to assess the impact and equity of the resulting allocation scheme. Subsequently, the proposed model is applied to a case study allocating water resources for the 11 provinces and municipalities in the Yangtze River Economic Belt (YREB). The objective is to achieve equitable spatial allocation of water resources from a water footprint perspective. Based on the statistical data in 2013, this approach starts with a proper accounting for water footprints in the 11 YREB provinces. We then determined an optimal allocation of water footprints by using the proposed lexicographic optimization approach from a land area angle. Lastly, we analyzed how different types of land uses contribute to allocation equity and we discuss policy changes to implement the optimal allocation schemes in the YREB. Analytical results show that: (1) the optimized agricultural and non-agricultural water footprints decrease from the current levels for each province across the YREB, but this decrease shows a heterogeneous pattern; (2) the WFLD of 11 YREB provinces all decline after optimization with the largest decline in Shanghai and the smallest decline in Sichuan; and (3) the impact of agricultural land on the allocation of agricultural water footprints is mainly reflected in the land use structure of three land types including arable land, forest land, and grassland. The different land use structures in the upstream, midstream, and downstream regions lead to the spatial heterogeneity of the optimized agricultural water footprints in the three YREB segments; (4) In addition to the non-agricultural land area, different regional industrial structures are the main reason for the spatial heterogeneity of the optimized non-agricultural water footprints. Our water-footprint-based optimal water resources allocation scheme helps alleviate the water resources shortage pressure and achieve coordinated and balanced development in the YREB.


2006 ◽  
Vol 10 (3) ◽  
pp. 455-468 ◽  
Author(s):  
A. K. Chapagain ◽  
A. Y. Hoekstra ◽  
H. H. G. Savenije

Abstract. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.


2018 ◽  
Author(s):  
Xiao-Bo Luan ◽  
Ya-Li Yin ◽  
Pu-Te Wu ◽  
Shi-Kun Sun ◽  
Yu-Bao Wang ◽  
...  

Abstract. Fresh water is consumed during agricultural production. With the shortage of water resources, assessing the water use efficiency is crucial to effectively managing agricultural water resources. The water footprint is a new index for water use evaluation, and it can reflect the quantity and types of water usage during crop growth. This study aims to establish a method for calculating the region-scale water footprint of crop production based on hydrological processes. This method analyzes the water-use process during the growth of crops, which includes irrigation, precipitation, underground water, evapotranspiration, and drainage, and it ensures a more credible evaluation of water use. As illustrated by the case of the Hetao irrigation district (HID), China, the water footprints of wheat, corn and sunflower were calculated using this method. The results show that canal water loss and evapotranspiration were responsible for most of the water consumption and accounted for 47.9 % and 41.8 % of the total consumption, respectively. The total water footprints of wheat, sunflower and corn were 1380–2888 m3/t, 942–1774 m3/t, and 2095–4855 m3/t, respectively, and the blue footprint accounts for more than 86 %. The spatial distribution pattern of the green, blue and total water footprint for the three crops demonstrated that higher values occurred in the eastern part of the HID, which had more precipitation and was further from the irrigating gate. This study offers a vital reference for improving the method used to calculate the crop water footprint.


2020 ◽  
Vol 12 (13) ◽  
pp. 5274 ◽  
Author(s):  
P.X.H. Bong ◽  
M.A. Malek ◽  
N.H. Mardi ◽  
Marlia M. Hanafiah

Modern technology and life-style advancements have increased the demand for clean water. Based on this trend it is expected that our water resources will be under stress leading to a high probability of scarcity. This study aims to evaluate the environmental impacts of selected traditional food manufacturing products namely: tempe, lemang, noodle laksam, fish crackers and salted fish in Malaysia. The cradle-to-gate approach on water footprint assessment (WFA) of these selected traditional food products was carried out using Water Footprint Network (WFN) and Life Cycle Assessment (LCA). Freshwater eutrophication (FEP), marine eutrophication (MEP), freshwater ecotoxicity (FETP), marine ecotoxicity (METP) and water consumption (WCP), LCA were investigated using ReCiPe 2016 methodology. Water footprint accounting of blue water footprint (WFblue), green water footprint (WFgreen) and grey water footprint (WFgrey) were established in this study. It was found that total water footprint for lemang production was highest at 3862.13 m3/ton. The lowest total water footprint was found to be fish cracker production at 135.88 m3/ton. Blue water scarcity (WSblue) and water pollution level (WPL) of these selected food products were also determined to identify the environmental hotspots. Results in this study showed that the WSblue and WPL of these selected food products did not exceed 1%, which is considered sustainable. Based on midpoint approach adopted in this study, the characterization factors for FEP, MEP, FETP, METP and WCP on these selected food products were evaluated. It is recommended that alternative ingredients or product processes be designed in order to produce more sustainable lemang.


Sign in / Sign up

Export Citation Format

Share Document