scholarly journals Humidity Distributions in Multilayered Walls of High-rise Buildings

2018 ◽  
Vol 33 ◽  
pp. 02045 ◽  
Author(s):  
Olga Gamayunova ◽  
Tatiana Musorina ◽  
Alexander Ishkov

The limitation of free territories in large cities is the main reason for the active development of high-rise construction. Given the large-scale projects of high-rise buildings in recent years in Russia and abroad and their huge energy consumption, one of the fundamental principles in the design and reconstruction is the use of energy-efficient technologies. The main heat loss in buildings occurs through enclosing structures. However, not always the heat-resistant wall will be energy-efficient and dry at the same time (perhaps waterlogging). Temperature and humidity distributions in multilayer walls were studied in the paper, and the interrelation of other thermophysical characteristics was analyzed.

Author(s):  
Burak Kantarci ◽  
Hussein T. Mouftah

Cloud computing aims to migrate IT services to distant data centers in order to reduce the dependency of the services on the limited local resources. Cloud computing provides access to distant computing resources via Web services while the end user is not aware of how the IT infrastructure is managed. Besides the novelties and advantages of cloud computing, deployment of a large number of servers and data centers introduces the challenge of high energy consumption. Additionally, transportation of IT services over the Internet backbone accumulates the energy consumption problem of the backbone infrastructure. In this chapter, the authors cover energy-efficient cloud computing studies in the data center involving various aspects such as: reduction of processing, storage, and data center network-related power consumption. They first provide a brief overview of the existing approaches on cool data centers that can be mainly grouped as studies on virtualization techniques, energy-efficient data center network design schemes, and studies that monitor the data center thermal activity by Wireless Sensor Networks (WSNs). The authors also present solutions that aim to reduce energy consumption in data centers by considering the communications aspects over the backbone of large-scale cloud systems.


In connection with the large-scale development of high-rise building projects recently in Russia and abroad and their significant energy consumption, one of the main principles in designing is the use of effective energy-saving technologies. Also, important aspects are reducing energy consumption and neutralizing the environmental impact of tall buildings. The most promising areas in the field of integration of solar modules (planar and concentrating) in the construction of buildings are development of BIPV technologies (roofing, film, facade materials), the integration of solar energy concentrators that do not require biaxial tracking (medium and low concentrations) on the facades and roofs of buildings (parabolic concentrators, lenses, and Fresnel mirrors), integration of highly concentrated modules on the roofs of buildings.


2020 ◽  
Vol 12 (11) ◽  
pp. 4726 ◽  
Author(s):  
Qiong He ◽  
S. Thomas Ng ◽  
Md. Uzzal Hossain ◽  
Godfried L. Augenbroe

This study presents a data-driven retrofitting approach by systematically analyzing the energy performance of existing high-rise residential buildings using a normative calculation logic-based simulation method. To demonstrate the practicality of the approach, typical existing buildings in five climate zones of China are analyzed based on the local building characteristics and climatic conditions. The results show that the total energy consumption is 544 kWh/m2/year in the severe cold zone, which is slightly higher than that in the cold zone (519 kWh/m2/year), but double that in the hot summer and cold winter zone, three times higher than that in the warm zone, and five times above that in the temperate zone. The dominant energy needs in different climatic zones are distinctive. The identified potentially suitable retrofitting measures are important in reducing large-scale energy consumption and can be used in supporting sustainable retrofit decisions for existing high-rise residential buildings in different climatic zones.


2013 ◽  
Vol 5 (3) ◽  
pp. 34-54
Author(s):  
Shiow-Fen Hwang ◽  
Han-Huei Lin ◽  
Chyi-Ren Dow

In wireless sensor networks, due to limited energy, how to disseminate the event data in an energy-efficient way to allow sinks quickly querying and receiving the needed event data is a practical and important issue. Many studies about data dissemination have been proposed. However, most of them are not energy-efficient, especially in large-scale networks. Hence, in this paper the authors proposed an energy-efficient data dissemination scheme in large-scale wireless sensor networks. First, the authors design a data storage method which disseminates only a few amount event data by dividing the network into regions and levels, and thus reducing the energy consumption. Then, the authors develop an efficient sink query forwarding strategy by probability analysis so that a sink can query events easily according to its location to reduce the delay time of querying event data, as well as energy consumption. In addition, a simple and efficient maintenance mechanism is also provided. The simulation results show that the proposed scheme outperforms TTDD and LBDD in terms of the energy consumption and control overhead.


In connection with the large-scale development of high-rise building projects recently in Russia and abroad and their significant energy consumption, one of the main principles in designing is the use of effective energy-saving technologies. Also important aspects are reducing energy consumption and neutralizing the environmental impact of tall buildings. The most promising areas in the field of integration of solar modules (planar and concentrating) in the construction of buildings are development of BIPV technologies (roofing, film, facade materials), the integration of solar energy concentrators that do not require biaxial tracking (medium and low concentrations) on the facades and roofs of buildings (parabolic concentrators, lenses, and Fresnel mirrors), integration of highly concentrated modules on the roofs of buildings.


2014 ◽  
Vol 525 ◽  
pp. 388-391
Author(s):  
Ho Yeol Lee ◽  
Yumin Kim ◽  
Yong Jun Lee ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang

The heat loss through the envelope accounts for the largest portion of the energy consumption in a building. It takes up more than 40% of the total heating and cooling energy. Therefore, a high performance insulation envelope technology that is 80% more energy efficient than the existing systems should be the basis of passive house construction. This study aims to improve the detailed design for efficient application of sandwich insulation system. And finally, an optimal sandwich insulation detail was selected.


Author(s):  
M.V. Rubtsova ◽  
◽  
Е.Е. Semenova

The influence of building plan configurations in relation to their spatial characteristics on their energy consumption is considered. The article substantiates the relevance of the research of space-planning solutions of building forms, taking into account energy efficiency. As the object of research, the authors selected the most common three-dimensional configurations of building forms, taking into account energy efficiency. Examples of the analysis of the main space-planning parameters of the building and the prerequisites for their influence on its heat loss are considered with the provided graphic materials that allow you to find out the dependence of the change in the area of enclosing structures on the change in the floor area. This comparison is carried out in order to determine an energy-efficient and rationally arranged space-planning solution, taking into account the principles of energy saving for the construction of buildings.


Author(s):  
Sareh Fotuhi Piraghaj ◽  
Amir Vahid Dastjerdi ◽  
Rodrigo N. Calheiros ◽  
Rajkumar Buyya

The numerous advantages of cloud computing environments, including scalability, high availability, and cost effectiveness have encouraged service providers to adopt the available cloud models to offer solutions. This rise in cloud adoption, in return encourages platform providers to increase the underlying capacity of their data centers so that they can accommodate the increasing demand of new customers. Increasing the capacity and building large-scale data centers has caused a drastic growth in energy consumption of cloud environments. The energy consumption not only affects the Total Cost of Ownership but also increases the environmental footprint of data centers as CO2 emissions increases. Hence, energy and power efficiency of the data centers has become an important research area in distributed systems. In order to identify the challenges in this domain, this chapter surveys and classifies the energy efficient resource management techniques specifically focused on the PaaS cloud service models.


2020 ◽  
Vol 172 ◽  
pp. 22010
Author(s):  
Kristjan Edula

Ramirent Modular Factory (RMF) has conducted the study in cooperation with Tallinn University of Technology to measure heat loss and calculate estimated energy consumption and monthly energy cost of common Ramirent rental modules. The need for the study emerged from Ramirent’s rental customers who have requested more environmentally friendly modules. This research was initiated to prove the theoretical assumption that the 2 wooden modules included in the study, which were produced by Ramirent Modular Factory, have lower heat loss and lower monthly energy costs per m², compared to the steel modules. There were 6 different modules included in the study, 2 steel modules with mineral wool insulation, 2 steel modules with polyurethane insulation and 2 wooden modules with mineral wool insulation. The energy consumption was measured between 21.12.2018 -15.05.2019. Exterior and interior climate of the modules was measured during the research. The conclusion is that 2 wooden modules produced by RMF are most energy efficient and have remarkably lower heat loss per m² than other modules included in the research. The calculated heat loss of a wooden module was in correlation with the energy consumption measurements. The real measured energy consumption of the steel modules was higher than calculated values. Future studies of heat loss are needed to eliminate disturbing factors and considering the use of ventilation aggregate with heat exchanger vs. direct forced air extraction, while maintaining healthy interior climate requirements.


2018 ◽  
Vol 1 (2) ◽  
pp. 355
Author(s):  
TANTRI OKTAVIA

People always work with using energy especially electricity. Global warming gives big impact to electricity consumption. Lighting and air conditioning is important thing to improve a human comfort inside the building. Architecture and interior design give impact to building’s energy consumption. Many high rise rent office are build at the city. High rise office is a branding for the company to look good. Not all building will use for the company, but share with other. The Office design must be good, comfort and good service and cheap for the rent. Energy consumption for operational cost is important thing to decrease rent cost. The solution to make energy efficient is make new design for interior. Air conditioning and lighting is a big part in energy comsumption. Designer must calculate the energy use to decrease an energy comsumption from AC and lighting. This research will collect all heat data from interior and from outdoor penetration. This research use Sun Path Method to know when the buildings have a biggest heat from sunlight everyday. The use of OTTV method (Overall Thermal Tranfer Value) to check a heat value transfer from the façade material. The result will help the designer to make zoning and will make a building efficient  Keyword: cooling load; energy efficient; lighting load; rental office; zoning


Sign in / Sign up

Export Citation Format

Share Document