scholarly journals Regeneration of paint sludge and reuse in cement concrete

2018 ◽  
Vol 38 ◽  
pp. 02021 ◽  
Author(s):  
Enqi Feng ◽  
Jitao Sun ◽  
Liming Feng

Paint Sludge (PS) is a hazardous waste. Inappropriate disposal of PS might be harmful to public health and the environment. Various size of Paint Sludge Solid Powder (PSSP) particles have been produced by automatic processing equipment via dewatering, crushing, screening removing Volatile Organic Compounds (VOCs), and etc. Meanwhile, the test results show that PSSP is not a hazardous waste. Both flexural and compressive strength are increased by adding PSSP of polyurethane to cement concrete at a level of below 10% of cement weight. However, the strength has a significant reduction at a level of above 15% of cement weight. The reason for the increase of strength is probably due to a slow coagulation and copolymerization of PSSP and cement. The reduction is likely due to the self-reunion of PSSP.

2017 ◽  
Vol 865 ◽  
pp. 341-346
Author(s):  
Asna Mohd Zain ◽  
Zahid M. Zazarin ◽  
Khairun Azizi Azizli ◽  
M. Hasnain Isa

Volatile organic compounds in hydrocarbon sludge are one of hazardous waste with the potential to contaminate water bodies. Immobilization is practically used to prevent uncontrolled released of toxic substances into the environment by bind into the inert materials like cement and admixtures. An oily component in the waste interferes the immobilization process by retarding the cementation reactions. This work explores immobilization techniques using OPC and zeolite with different water to cement (WC), cement to sludge ratios (CS) and the addition of 5 to 20 wt. % zeolite with the objective of reducing waste mobility. Immobilized sludge was measured by compressive strength, porosity and leachability of metals, and oil & grease. Immobilized sludge at WC 0.35 and CS of 40 achieved 52.55 MPa UCS. Zeolite addition contributes to the increase in accessible porosity but reduces the UCS to a maximum of 31.22 MPa. Incorporation of 10 wt. % zeolite successfully binds the waste indicated by only 0.2 ppm Fe had been released into the leachate. The oil & grease leachability was found below the permissible level while achieved the acceptable compressive strength value of 20.7 MPa.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2018 ◽  
Vol 768 ◽  
pp. 31-35
Author(s):  
Jin Wang ◽  
Zhen Zhu Ma ◽  
Lu Chen ◽  
Hong Juan Sun ◽  
Wu Kun Fan

With reference to the international standard ISO16000-9 and the national standard GB/T 31106-14, this paper has chosen leather seats as the research object in order to study the emission of volatile organic compounds (VOCs) and total volatile organic compound (TVOC). The test results show that about 21 species of VOCs released from the leather seats were measured, including several types of aldehydes, ketones, aromatic hydrocarbon ,hydrocarbon, lipids and so on.This paper analysis the possible sources of volatile organic compounds in leather seats as well.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Djedjen Achmad ◽  
Desi Supriyan

ABSTRACTHas been researched the impact of mud in aggregate on geopolymer concrete with studies using the cement concrete as a reference. In this study both of concrete are mixed with a variation of mud of 0%, 0.75%, 3% and 5.75% of the combined aggregate weight. Compressive strength of cement concrete is designed with a target of 300 kg / cm2 and geopolymer concrete is made with water binder ratio (w/b) 0.25, Molarity 12 M, the ratio of sodium silicate and sodium hydroxide 1.5. At the age of 3, 7, 14 and 28 day tested of compressive strength, while the spliting test, flexural tensile strength, and modulus of elasticity are tested at 28 days. From the test results, the higher mud content in aggregate , the mechanical properties of the concrete are decreased. Based on testing of compressive strength in cement concrete at 28 days, with a 3% mud content (the content of the reference mud) turns of compressive strength decreased by 77.356%. Of the percentage reduction on the compressive strength of the cement concrete, can be compared to the mud content in geopolymer concrete at 2.04%. Thus the maximum mud on geopolymer concrete aggregate is, for coarse aggregate of 0.68% and a maximum mud content for fine aggregate was 3.4%.Key words : Mud, aggregate, concrete, cement, geopolimer, strengthABSTRAKTelah diteliti dampak kadar lumpur pada agregat untuk beton geopolimer dengan penelitian menggunakan benda uji beton semen sebagai acuan dan beton geopolimer. Dalam penelitian ini ke dua beton tersebut dicampur dengan lumpur gabungan agregat kasar dan agregat halus dengan variasi 0 %, 0.75 %, 3 % dan 5,75 % dari berat agregat gabungan. Beton semen dirancang dengan target kuat tekan 300 kg/cm2 dan beton geopolimer dibuat dengan campuran water binder ratio (w/b) 0.25, Molaritas 12 M, perbandingan sodium silikat dan sodium hidroksida 1.5. Pada umur 3, 7, 14 dan 28 hari dilakukan uji kuat tekan, sedangkan uji kuat tarik belah, uji kuat tarik lentur, dan modulus elastisitas dilakukan pada umur 28 hari. Dari hasil uji terlihat bahwa semakin tinggi kadar lumpur pada agregat, karakteristik mekanis kedua beton tersebut mengalami penurunan. Berdasarkan pengujian kuat tekan pada beton semen umur 28 hari, dengan kadar lumpur 3 % (kadar lumpur referensi) ternyata beton semen mengalami penurunan kuat tekan sebesar 77.356 %. Dari persentase penurunan kuat tekan beton semen tersebut, diplot pada grafik kuat tekan beton geopolimer maka persentase kadar lumpur gabungan yang mengalami penurunan 77.356 % adalah 2.04 %. Dengan demikian kadar lumpur maksimum pada agregat beton geopolimer adalah, untuk agregat kasar sebesar 0.68 % dan kadar lumpur maksimum untuk agregat halus adalah 3.4 %.Kata kunci : Lumpur, agregat, beton, semen, geopolimer, kekuatan


Gefahrstoffe ◽  
2020 ◽  
Vol 80 (04) ◽  
pp. 141-150
Author(s):  
R. Oppl ◽  
M. Broege ◽  
F. Kuebart ◽  
T. Neuhaus ◽  
M. Wensing

The Association for the Control of Emissions in Products for Flooring Installation, Adhesives and Building Materials (GEV) organised a round-robin test in 2017. They wanted to establish a list of recommended testing laboratories on the basis of test results. 33 laboratories from twelve countries received three spiked test products, similar to flooring adhesives and a parquet lacquer. Less variation of results was observed compared to earlier round-robin tests, but the differences between the testing laboratories were still significant. This fact inspired a discussion regarding the analytical challenges. As an example, the parameter „sum of all volatile organic compounds (VOCs) without a target value“ includes the non-identified VOCs. This round-robin test showed a relative standard deviation of 100% and more for that parameter, which questions its reliability. The performance of 16 laboratories was rated as good by GEV. Currently, a list of recommended testing laboratories for GEV emissions testing comprises eleven laboratories from two countries. These laboratories performed well in this round-robin test and presented an appropriate accreditation according to ISO/IEC 17025.


2018 ◽  
Vol 7 (4.37) ◽  
pp. 138
Author(s):  
Asst. Prof. Dr. Khawla H. H. Shubber ◽  
Eng. Sajjad Hashim Mohamed

This research represents a trial of understanding and improving mechanical properties of base or subbase granular materials, used in pavement construction, stabilized with Portland cement known as cement treated base (CTB) in terms of density, optimum water content (O.W.C), and compression Strength of three curing ages (3, 7, 28) days under different situations. Different Portland cement percent of (0, 5, 7, 10, 12, and 15) % by weight were added to selected base course granular materials (type B according to local standard specification in Iraq). Results showed that the density of mixture increase with increasing added cement percent, while O.W.C takes its maximum value around 7% cement content, and compression strength increase with increasing cement content and curing age. Then effect of replacing 50% of natural granular materials by waste Portland cement concrete (WPCC) was investigated on the results of (0, 7& 15)% cement content on density, O.W.C and compression strength in the three curing ages. Results reveled although density of mixture cooperating WPCC for 0% cement content was higher, CTB of natural granular material were denser. On the other hand compressive strength decrease in case of using WPCC for all percent cement added and curing ages. Finally, effect of soaking in water on CTB with (7 &15)% cement compressive strength of three curing ages was studied, under three period of soaking (1 week, 2 weeks, &one month). Test results exposed that, CTB Compressive strength increase with increasing soaking period but still less than that of un-soaked and for all curing ages. For each test stage mathematics relationships with acceptable correlation were presented proofing test results tendency.  


2021 ◽  
Vol 9 (12) ◽  
pp. 441-447
Author(s):  
K. Srinivas

Abstract: To study the flexural behaviour of plain cement concrete with self-compaction concrete using three point loading. We are using two different types of concrete (Plain Cement Concrete and Self Compaction Concrete). For this we are using M20 grade concrete. We cast cubes and beams of sizes 150x150x150mm and 150x150x700mm respectively.Based on the test results it is concluded that the flexural strength of the self-compaction concrete beams is more than the plain cement concrete beams. And in the combination also the flexural strength is more when the plain cement concrete layer is at the bottom while the selfcompaction concrete layer is at top.


Sign in / Sign up

Export Citation Format

Share Document