scholarly journals Using Solar Energy for Charging Electric Vehicles in Poland – a case study

2018 ◽  
Vol 44 ◽  
pp. 00107 ◽  
Author(s):  
Witold Marańda

The recent advancements in the fields of electric propulsion and battery technology have made possible the implementation of all-electric transport within the coming decades. However, the widespread use of electric cars could seriously threaten the existing capabilities of energy generation and the load of the utility grid. This work investigates the use of solar energy for producing energy for transportation locally, using energy buffering and minimizing grid energy transfers. A case-study of an electric car and dedicated PV-system is investigated for the duration of a full year in Polish climatic conditions.

Author(s):  
Vytautas Palevičius ◽  
Tomas Karpavičius ◽  
Mantas Kaušylas

The beginning of 21th century is extremely important for developed countries because of the reduction of their dependence on fossil fuels. The biggest vehicle manufacturing companies are planning to start selling at least one model of electric vehicle and it is expected that by 2025 approximately 10% of the new cars sold worldwide will be electric. In order to reach this goal, some countries are successfully executing an effective electric transport development policy: to create a publicly accessible network for charging electric vehicles, pay incentives for purchasing an electric car, create free of charge parking places and implement other encouraging measures. While analysing world trends it has been noted that the majority of electric cars owners live in private houses. This is due to the fact that people who are living in apartment buildings and planning on purchasing an electric car come across multiple issues when it comes to charging the car at their living area at night. Therefore, the aim of this article is to evaluate the opportunities of developing access points for charging electric cars around the territory of apartment buildings. To achieve this we have raised these main objectives: have the EU member states already foreseen the necessary measures ensuring comfortable charging of electric cars in the territory of apartment buildings?; have the plans for the development of charging facilities in the territory of apartment buildings already been prepared?; which new technologies will be used for the safe charging of electric cars?


Author(s):  
Mahmoud Abdelhamid ◽  
Imtiaz Haque ◽  
Rajendra Singh ◽  
Srikanth Pilla ◽  
Zoran Filipi

The challenge of meeting the Corporate Average Fuel Economy (CAFE) standards of 2025 has resulted in the development of systems that utilize alternative energy propulsion technologies. To date, the use of solar energy as an auxiliary energy source of on-board fuel has not been extensively investigated, however. The authors investigated the design parameters and techno-economic impacts within a solar photovoltaic (PV) system for use as an on-board auxiliary power source for the internal combustion engine (ICE) vehicles and plug-in electric vehicles (EVs). The objective is to optimize, by hybridizing, the conventional energy propulsion systems via solar energy based electric propulsion system by means of the on-board PVs system. This study is novel in that the authors investigated the design parameters of the on-board PV system for optimum well-to-tank energy efficiency. The following design parameters were analyzed: the PV device, the geographical solar location, thermal and electrical performances, energy storage, angling on the vehicle surface, mounting configuration and the effect on aerodynamics. A general well-to-tank form was derived for use in any other PV type, PV efficiency value, or installation location. The authors also analyzed the techno-economic value of adding the on-board PVs for ICE vehicles and for plug-in EVs considering the entire Powertrain component lifetime of the current and the projected price scenarios per vehicle lifetime, and driving by solar energy cost ($ per mile). Different driving scenarios were used to represent the driving conditions in all the U.S states at any time, with different vehicles analyzed using different cost scenarios to derive a greater understanding of the usefulness and the challenges inherent in using on-board PV solar technologies. The addition of on-board PVs to cover only 1.0 m2 of vehicle surfaces was found to extend the daily driving range to up to 2 miles for typical 2016 model vehicles, depending upon on vehicle specifications and destination, however over 7.0 miles with the use of extremely lightweight and aerodynamically efficient vehicles in a sunny location. The authors also estimated the maximum possible PV installation area via a unique relationship between the vehicle footprint and the projected horizontal vehicle surface area for different vehicles of varying sizes. It was determined that up to 50% of total daily miles traveled by an average U.S. person could be driven by solar energy, with the simple addition of on-board PVs to cover less than 50% (3.25 m2) of the projected horizontal surface area of a typical mid-size vehicle (e.g., Nissan Leaf or Mitsubishi i-MiEV). Specifically, the addition of the proposed PV module to a 2016 Tesla Model S AWD-70D vehicle in San Diego, CA extended the average daily range to 5.2 miles in that city. Similarly, for the 2016 BMW i3 BEV in Texas, Phoenix, and North Carolina, the range was extended to more than 7.0 miles in those states. The cost of hybridizing a solar technology into a vehicle was also estimated for current and projected prices. The results show for current price scenario, the expense of powering an ICE vehicle within a certain range with only solar energy was between 4 to 23 cents per mile depending upon the vehicle specification and driving location. Future price scenarios determined the driving cost is an optimum of 17 cents per mile. However, the addition of a PV system to an EV improved the economics of the system because of the presence of the standard battery and electric motor components. For any vehicle in any assumed location, the driving cost was found to be less than 6.0 cents per mile even in the current price scenario. The results of this dynamic model are applicable for determining the on-board PV contribution for any vehicle size with different powertrain configurations. Specifically, the proposed work provides a method that designers may use during the conceptual design stage to facilitate the deployment of an alternative energy propulsion system toward future mobility.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 33-39 ◽  
Author(s):  
Henry Oman

Traditional batteries stored energy in thick plates made from heavy metals like lead, nickel, and zinc. They delivered from 15 to 20 Wh/kg. Lighter-weight lithium anodes were used in some military batteries. Then came the need for lightweight batteries for powering cellular telephones and laptop computers. Lithiumion batteries were developed, and the worldwide demand, just for use in laptop computers, has grown to 150 million units per year.The need to reduce air pollution in downtown areas has created a market for battery-powered electric vehicles. Clara Ford chose to drive an electric car, even though her husband, Henry Ford, was making gasoline-powered cars. However, the cost of replacing worn-out leadacid batteries soon ended the electric-car age of the early 1900s. The need for lightweight, long-life batteries for zero-emission cars has produced unprecedented investments in battery technology. The lithium-battery technology used in laptop-computer batteries did not support the requirements of high power and long life for the charge/discharge cycling needed in electric cars. An executive of a lithium-battery manufacturer was asked what he was doing about the cycle life of his batteries. His answer: “The life of a laptop computer is nine months. Then a newer model makes it obsolete. We meet this requirement!”


2019 ◽  
Vol 65 (2) ◽  
pp. 325-345
Author(s):  
Purva Mishra

Climate is rapidly changing with disruptive impacts. Without decisive action, energy-related greenhouse gas (GHG) emissions would lead to climate degradation. All types of energy efficiency technologies will require widespread deployment, as global warming is likely to reach 1.5°C between 2030 and 2052, if it continues to increase at the current rate. Photovoltaic (PV) energy is one of the most promising emerging technologies in mitigating the impact of climate change. PV is the name of a method of converting solar energy into direct current electricity. Therefore, the objectives of this article are to study the initiatives taken by energy development agencies in India for promoting renewable sources of energy, to study the use of solar power as a renewable source of energy through PV system and to analyse the solar PV rooftop system in Chandigarh as a case study. The article is an empirical study based on primary data. For the purpose of collecting the primary data, a structured questionnaire was prepared for citizens and an interview schedule for officials. The results of the study show that the majority of the citizens were satisfied with the solar photovoltaic (SPV) installations in Chandigarh, while a very few of them were dissatisfied and their dissatisfaction revolved around getting clearances from different departments.


The aim of this work is to study the technological feasibility and economic viability of the electrification of small house lies in a farm 50km far away from Almadinah AlMunawwarah. Nowadays, solar powered air conditioning has witnessed an increased progress because air conditioning system is almost a must in every building in Saudi Arabia where the outside temperature in summer higher than 45◦ C. therefore, this paper consists of two parts: one to investigate the design and performance of solar powered air conditioning system as a case study integrated with photovoltaic (PV) system which consists of PV panels, solar charger, inverter and batteries. The second part is to study the feasibility to provide electricity for a farm lies in the remote area far 50 km from Almadinah. The first step in this project is the load calculations for the selected space including lighting, cooling and other necessary appliances. Based on the cooling load calculations for the specified room used as a case study, it was found the estimated cooling load about 1-ton refrigeration (3.52 kW), the photovoltaic (PV) system has been constructed and built with the necessary connections. Data logging system has been used to measure the temperatures at the main components in the cycle. The input powers for the system as well as the coefficient of performance (COP) for the system under Almadinah climatic conditions were measured along the day. The COP varies between 2.16 to 4.22 for the system and are in a good agreement with conventional system performance. Economically, the PV system found to be the optimal solution to provide the required load at an initial cost of 187,267 SR. The present work shows that the PV system has the potential to provide electricity for remote homes far from the grids with additional environmental benefit that otherwise not gained when using conventional fossil fuel


2013 ◽  
Vol 6 (3) ◽  
pp. 183-195

Undoubtedly, sun is the cleanest energy source. Specific systems are needed however for the collection and transformation of solar energy and the manufacturing processes of such systems, as well as the production of the raw materials required, are associated with impacts to the environment. As a result, the life cycle environmental impact of solar systems depends on the type and the size of the systems. System characteristics and also the climate of the installation area, affect the substituted conventional energy (solar coverage). In this paper, the net environmental gain of flat plate thermosyphonic solar systems for domestic use is determined, accounting for the household size (different collector sizes) and the installation area (different solar coverage and transportation distance) for the major cities of Greece. Calculations are based on the “Eco-Indicator ‘99” methodology and database and it is proved that substituting electricity with solar energy is always environmentally beneficial for systems installed in all major cities of Greece.


2020 ◽  
Vol 12 (15) ◽  
pp. 6162
Author(s):  
Mariusz T. Sarniak

The paper analyzes a case study of the impact of changing the nominal power ratio (NPR) on the efficiency of a PV (photovoltaic) system located in Poland. In the first stage of the research, the acceptable range of variability for NPR was determined based on simulation calculations, taking into account the parameters of PV modules, inverter, and climatic conditions. The second stage was verification tests for two acceptable extreme cases, carried out based on the analysis of detailed data from the monitoring of PV installations. The results of the verification tests for the two considered periods of operation of the PV system with the change of the NPR coefficient from 82% to 98% resulted in an increase in the annual energy yield by 446.2 kWh. On the other hand, higher relative values of generated energy were obtained only for the months with the lowest insolation in December and in January by 8.2 and 6.04 kWh/kWp, respectively. Higher oversizing of the PV generator (for NPR = 82%) also resulted in an increase by 6.4% in the frequency of operation of the PV inverter in the largest power range (2250–2500 W) and a decrease by 3.7% in the frequency in the lowest power range (0–250 W) for the whole year.


1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Sign in / Sign up

Export Citation Format

Share Document